A279614 a(1)=1, a(d(x_1)*..*d(x_k)) = 1+a(x_1)+..+a(x_k) where d(n) = n-th Fermi-Dirac prime.
1, 2, 3, 4, 5, 4, 6, 5, 5, 6, 7, 6, 6, 7, 7, 6, 7, 6, 8, 8, 8, 8, 7, 7, 7, 7, 7, 9, 8, 8, 8, 7, 9, 8, 10, 8, 7, 9, 8, 9, 8, 9, 7, 10, 9, 8, 9, 8, 9, 8, 9, 9, 9, 8, 11, 10, 10, 9, 9, 10, 8, 9, 10, 9, 10, 10, 8, 10, 9, 11, 8, 9, 8, 8, 9, 11, 12, 9, 8, 10, 10, 9
Offset: 1
Keywords
Examples
Sequence of rooted identity trees represented as finitary sets begins: {}, {{}}, {{{}}}, {{{{}}}}, {{{{{}}}}}, {{}{{}}}, {{{{{{}}}}}}, {{}{{{}}}}, {{{}{{}}}}, {{}{{{{}}}}}, {{{{{{{}}}}}}}, {{{}}{{{}}}}, {{{}{{{}}}}}, {{}{{{{{}}}}}}, {{{}}{{{{}}}}}, {{{{}{{}}}}}, {{{}{{{{}}}}}}, {{}{{}{{}}}}, {{{{{{{{}}}}}}}}, {{{{}}}{{{{}}}}}, {{{}}{{{{{}}}}}}, {{}{{{{{{}}}}}}}, {{{{}}{{{}}}}}, {{}{{}}{{{}}}}.
Links
- OEIS Wiki, "Fermi-Dirac representation" of n
Programs
-
Mathematica
nn=200; FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]]; FDprimeList=Array[FDfactor,nn,1,Union]; FDweight[n_?(#<=nn&)]:=If[n===1,1,1+Total[FDweight[Position[FDprimeList,#][[1,1]]]&/@FDfactor[n]]]; Array[FDweight,nn]
Formula
Number of appearances of n is |a^{-1}(n)| = A004111(n).
Comments