A279619 Expansion of g.f. of A002652 in powers of the g.f. of A279618.
1, 2, 22, 336, 6006, 117348, 2428272, 52303680, 1160427510, 26337699740, 608642155660, 14272471122560, 338764038330480, 8123136091556640, 196484811079765440, 4788469475873867520, 117465323079289162230, 2898183118626011393100
Offset: 1
Keywords
Examples
G.f. = 1 + 2*x + 22*x^2 + 336*x^3 + 6006*x^4 + ....
References
- L. O'Brien, Modular forms and two new integer sequences at level 7, Massey University, 2016.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500
- H. H. Chan, S. Cooper, F. Sica, Congruences satisfied by Apéry-like numbers, International Journal of Number Theory, 2010, 6(01), 89-97. Conjecture 5.4.
- Lynette O'Brien, Modular forms and two new integer sequences at level 7
- Lynette O'Brien, Modular forms and two new integer sequences at level 7
Crossrefs
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Programs
-
Magma
I:=[2, 22]; [1] cat [n le 2 select I[n] else ((26*n^2-39*n+15)* Self(n-1) + 3*(3*n-4)*(3*n-5)*Self(n-2))/n^2 : n in [1..50]] // G. C. Greubel, Jul 04 2018
-
Mathematica
RecurrenceTable[{a[n+1] == ((26*n^2+13*n+2)*a[n] + 3*(3*n-1)*(3*n-2)*a[n-1])/ (n + 1)^2, a[-1] == 0, a[0] == 1}, a, {n, 0, 50}] (* G. C. Greubel, Jul 04 2018 *) CoefficientList[Series[Sqrt[7]*(1/(25 - 80*x + 24*Sqrt[1 - 27*x]*Sqrt[1+x]))^(1/4) * Hypergeometric2F1[1/12, 5/12, 1, 13824*x^7/(1 - 21*x + 8*x^2 + Sqrt[1 - 27*x] * (1 - 8*x)*Sqrt[1+x])^3], {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 04 2018 *)
Formula
(n+1)^2*a_7(n+1) = (26*n^2+13*n+2)*a_7(n) + 3*(3*n-1)*(3*n-2)*a_7(n-1), a(0)=1, a(-1)=0.
Conjecture: For any positive integer n and any prime p with p equiv. 0,1,2 or 4 modulo 7, a(n) equiv. a(n)=a(n_0)a(n_1)...a(n_r) modulo p, where n=n_0+n_1p+...n_rp^r is the base p representation of n.
Conjecture: a(n)~ C n^(-3/2) 27^n where C=0.0955223052681267146513079107870296256727946666510071798669948234917659...
Comments