A279620 Limit of the sequence of words defined by w(1) = 1, w(2) = 1221, and w(n) = w(n-1) 2 w(n-2) 2 w(n-1) for n >= 2. Also the fixed point of the map 1 -> 122, 2 -> 12.
1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2
Offset: 1
Keywords
References
- Allombert, Bill, Nicolas Brisebarre, and Alain Lasjaunias. "On a two-valued sequence and related continued fractions in power series fields." The Ramanujan Journal 45.3 (2018): 859-871. See W in Theorem 2.
Links
- Alain Lasjaunias and Jia-Yan Yao, Hyperquadratic continued fractions and automatic sequences, Finite Fields and Their Applications 40 (2016) 46-60. See Section 4.
- Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003. Apparently unpublished. This is a scanned copy of the version that the author sent to me in 2003. The sequence is on page 1, but there is a typo in the definition: g(1)=112 should be g(1)=122.
Programs
-
Mathematica
Nest[Flatten[#]/.{1->{1,2,2},2->{1,2}}&,{1},6]//Flatten (* Harvey P. Dale, Apr 21 2020 *)