A279634 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 3/2.
1, -3, 5, -9, 18, -36, 72, -144, 288, -576, 1152, -2304, 4608, -9216, 18432, -36864, 73728, -147456, 294912, -589824, 1179648, -2359296, 4718592, -9437184, 18874368, -37748736, 75497472, -150994944, 301989888, -603979776, 1207959552, -2415919104, 4831838208
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-2).
Crossrefs
Cf. A005010.
Programs
-
Mathematica
z = 50; f[x_] := f[x] = Sum[Floor[(3/2)*(k + 1)] x^k, {k, 0, z}]; f[x] CoefficientList[Series[1/f[x], {x, 0, z}], x] LinearRecurrence[{-2},{1,-3,5,-9},40] (* Harvey P. Dale, Jul 28 2023 *)
Formula
G.f.: 1/(1 + 3x + 4x^2 + 6x^3 + ...).
G.f.: (1 - x) (1 - x^2)/(1 + 2x).
E.g.f.: - (1/8) - (3/4)*x + (1/4)*x^2 + (9/8)*exp(-2*x). - Alejandro J. Becerra Jr., Feb 16 2021
Comments