A279709 T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.
1, 1, 2, 1, 2, 4, 2, 3, 5, 8, 3, 4, 11, 13, 16, 5, 6, 22, 42, 34, 32, 8, 9, 47, 125, 161, 89, 64, 13, 14, 102, 385, 717, 617, 233, 128, 21, 22, 224, 1195, 3245, 4121, 2364, 610, 256, 34, 35, 494, 3751, 14988, 27346, 23690, 9057, 1597, 512, 55, 56, 1089, 11823, 70220
Offset: 1
Examples
Table starts ...1....1......1.......2.........3..........5............8............13 ...2....2......3.......4.........6..........9...........14............22 ...4....5.....11......22........47........102..........224...........494 ...8...13.....42.....125.......385.......1195.........3751.........11823 ..16...34....161.....717......3245......14988........70220........329692 ..32...89....617....4121.....27346.....187484......1302321.......9047660 ..64..233...2364...23690....230128....2342179.....24137862.....248664928 .128..610...9057..136181...1936687...29270275....447547408....6837220721 .256.1597..34699..782826..16300179..365809911...8297886949..187983779265 .512.4181.132938.4500021.137192011.4571688626.153848240903.5168463666199 Some solutions for n=4 k=4 ..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1 ..0..0..1..0. .0..1..1..0. .0..1..0..0. .0..1..0..1. .0..1..1..0 ..1..0..1..1. .0..0..1..1. .0..0..1..1. .0..1..0..1. .0..0..0..1 ..0..1..0..1. .0..1..0..1. .1..0..0..1. .0..1..0..1. .1..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..221
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2)
k=3: a(n) = 5*a(n-1) -5*a(n-2) +2*a(n-3)
k=4: [order 8] for n>9
k=5: [order 12] for n>13
k=6: [order 32] for n>33
k=7: [order 60] for n>62
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) for n>3
n=2: a(n) = 2*a(n-1) -a(n-3)
n=3: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +4*a(n-4) -a(n-5) -a(n-7) -a(n-8)
n=4: [order 23] for n>25
n=5: [order 56] for n>64