cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A279712 Number of 5Xn 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

16, 34, 161, 717, 3245, 14988, 70220, 329692, 1554991, 7348544, 34783369, 164707073, 780082143, 3694519412, 17497209152, 82864915694, 392436915282, 1858523413836, 8801702771851, 41683674474943, 197408500938927
Offset: 1

Views

Author

R. H. Hardin, Dec 17 2016

Keywords

Comments

Row 5 of A279709.

Examples

			Some solutions for n=4
..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..0
..0..0..1..0. .0..0..1..0. .0..0..1..1. .0..0..1..0. .0..1..1..0
..0..1..1..0. .1..0..1..0. .1..0..0..0. .1..0..1..1. .0..1..0..1
..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..0..1. .0..0..1..0
..0..0..1..0. .0..1..0..1. .0..0..1..0. .1..0..1..0. .1..0..1..0
		

Crossrefs

Cf. A279709.

Formula

Empirical: a(n) = 16*a(n-1) -111*a(n-2) +440*a(n-3) -1045*a(n-4) +1204*a(n-5) +873*a(n-6) -5800*a(n-7) +8588*a(n-8) -892*a(n-9) -11828*a(n-10) -4978*a(n-11) +89393*a(n-12) -217044*a(n-13) +273217*a(n-14) -116888*a(n-15) -321350*a(n-16) +1016314*a(n-17) -1839287*a(n-18) +2439426*a(n-19) -2180856*a(n-20) +689764*a(n-21) +1139306*a(n-22) -1972152*a(n-23) +2117801*a(n-24) -3180750*a(n-25) +4464553*a(n-26) -4044600*a(n-27) +2270050*a(n-28) -1710650*a(n-29) +1984966*a(n-30) +176262*a(n-31) -3820242*a(n-32) +7377536*a(n-33) -6522367*a(n-34) +440320*a(n-35) -672576*a(n-36) +3135532*a(n-37) +5641800*a(n-38) +295226*a(n-39) +2804244*a(n-40) -1864066*a(n-41) -3970234*a(n-42) -4508950*a(n-43) -2225885*a(n-44) -158472*a(n-45) +552222*a(n-46) +1205102*a(n-47) +844822*a(n-48) +418724*a(n-49) +98418*a(n-50) -29748*a(n-51) -45061*a(n-52) -38454*a(n-53) -16390*a(n-54) -4870*a(n-55) -572*a(n-56) for n>64

A279704 Number of n X 3 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

1, 3, 11, 42, 161, 617, 2364, 9057, 34699, 132938, 509309, 1951253, 7475596, 28640333, 109726191, 420380482, 1610552121, 6170310577, 23639553244, 90567317577, 346979442819, 1329339732698, 5092936084549, 19511940644893
Offset: 1

Views

Author

R. H. Hardin, Dec 17 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..0. .0..1..0. .0..1..0. .0..1..0. .0..1..1. .0..1..0. .0..1..1
..0..1..0. .1..0..1. .0..1..0. .0..1..1. .0..0..1. .0..1..0. .0..0..1
..1..0..1. .1..0..1. .0..0..1. .1..0..0. .1..0..0. .1..0..0. .0..1..1
..1..0..1. .0..1..0. .1..0..1. .0..1..0. .1..1..0. .1..1..0. .0..0..1
		

Crossrefs

Column 3 of A279709.

Formula

Empirical: a(n) = 5*a(n-1) - 5*a(n-2) + 2*a(n-3).
Empirical g.f.: x*(1 - x)^2 / (1 - 5*x + 5*x^2 - 2*x^3). - Colin Barker, Feb 11 2019

A279705 Number of n X 4 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 4, 22, 125, 717, 4121, 23690, 136181, 782826, 4500021, 25868076, 148700951, 854797731, 4913749086, 28246366671, 162372399730, 933387168180, 5365515365948, 30843315747327, 177300792451846, 1019202061854748
Offset: 1

Views

Author

R. H. Hardin, Dec 17 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..0..1. .0..1..0..1. .0..1..0..0. .0..1..0..1. .0..1..0..1
..1..0..1..1. .0..0..1..1. .0..1..1..0. .1..0..0..1. .0..0..1..1
..1..0..0..1. .1..0..0..0. .0..0..1..1. .1..1..0..1. .1..0..0..1
..1..0..1..0. .0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
		

Crossrefs

Column 4 of A279709.

Formula

Empirical: a(n) = 10*a(n-1) - 33*a(n-2) + 61*a(n-3) - 78*a(n-4) + 64*a(n-5) - 32*a(n-6) + 9*a(n-7) - a(n-8) for n>9.
Empirical g.f.: x*(2 - 16*x + 48*x^2 - 85*x^3 + 105*x^4 - 82*x^5 + 40*x^6 - 11*x^7 + x^8) / (1 - 10*x + 33*x^2 - 61*x^3 + 78*x^4 - 64*x^5 + 32*x^6 - 9*x^7 + x^8). - Colin Barker, Feb 11 2019

A279706 Number of nX5 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

3, 6, 47, 385, 3245, 27346, 230128, 1936687, 16300179, 137192011, 1154685911, 9718495665, 81796457512, 688446233557, 5794361407059, 48768695462933, 410465538968189, 3454715318219146, 29076881764570866, 244727850397713496
Offset: 1

Views

Author

R. H. Hardin, Dec 17 2016

Keywords

Comments

Column 5 of A279709.

Examples

			Some solutions for n=4
..0..1..0..1..0. .0..1..0..1..0. .0..1..1..0..1. .0..1..0..1..1
..0..1..0..1..0. .1..0..1..1..0. .0..0..0..1..0. .0..1..0..0..1
..1..0..1..0..1. .1..0..1..0..0. .1..1..1..0..1. .0..0..1..0..1
..0..1..0..1..0. .1..0..1..1..0. .0..0..1..0..1. .1..0..1..0..1
		

Crossrefs

Cf. A279709.

Formula

Empirical: a(n) = 17*a(n-1) -107*a(n-2) +388*a(n-3) -991*a(n-4) +1845*a(n-5) -2506*a(n-6) +2365*a(n-7) -1546*a(n-8) +695*a(n-9) -219*a(n-10) +44*a(n-11) -4*a(n-12) for n>13

A279707 Number of nX6 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

5, 9, 102, 1195, 14988, 187484, 2342179, 29270275, 365809911, 4571688626, 57134413334, 714035149793, 8923627161193, 111522680881055, 1393750357076514, 17418341038959909, 217685042385032357, 2720510386500144294
Offset: 1

Views

Author

R. H. Hardin, Dec 17 2016

Keywords

Comments

Column 6 of A279709.

Examples

			Some solutions for n=4
..0..1..0..1..0..0. .0..1..0..1..0..1. .0..1..0..1..1..0. .0..1..0..1..0..1
..0..1..0..1..1..0. .0..1..0..1..0..1. .0..1..0..0..1..0. .0..1..0..1..1..0
..0..1..0..1..0..1. .1..0..1..0..1..1. .1..0..1..1..0..1. .0..1..0..0..0..1
..0..1..0..1..0..1. .1..0..1..0..0..1. .1..0..0..1..0..1. .1..0..1..1..0..1
		

Crossrefs

Cf. A279709.

Formula

Empirical: a(n) = 37*a(n-1) -596*a(n-2) +5876*a(n-3) -41252*a(n-4) +223532*a(n-5) -977316*a(n-6) +3536050*a(n-7) -10754246*a(n-8) +27797517*a(n-9) -61642501*a(n-10) +118357619*a(n-11) -198557227*a(n-12) +293436184*a(n-13) -384520035*a(n-14) +448773667*a(n-15) -467646170*a(n-16) +435555142*a(n-17) -362596124*a(n-18) +269556370*a(n-19) -178530525*a(n-20) +104895669*a(n-21) -54315067*a(n-22) +24563722*a(n-23) -9593323*a(n-24) +3191542*a(n-25) -889524*a(n-26) +203375*a(n-27) -37080*a(n-28) +5175*a(n-29) -518*a(n-30) +33*a(n-31) -a(n-32) for n>33

A279708 Number of nX7 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 14, 224, 3751, 70220, 1302321, 24137862, 447547408, 8297886949, 153848240903, 2852444457070, 52886096577189, 980541258146526, 18179848809562888, 337065772370567898, 6249410263109328878, 115867975607134654458
Offset: 1

Views

Author

R. H. Hardin, Dec 17 2016

Keywords

Comments

Column 7 of A279709.

Examples

			Some solutions for n=4
..0..1..0..1..0..1..0. .0..1..0..1..1..0..1. .0..1..0..1..0..0..1
..1..0..0..1..0..1..0. .0..1..0..0..1..0..1. .1..0..1..1..1..0..0
..1..0..0..1..1..0..0. .0..1..1..0..1..0..1. .1..0..0..1..0..1..1
..1..0..1..0..1..1..0. .0..1..0..1..0..1..0. .1..1..0..1..0..0..1
		

Crossrefs

Cf. A279709.

Formula

Empirical recurrence of order 60 (see link above)

A279710 Number of 3 X n 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

4, 5, 11, 22, 47, 102, 224, 494, 1089, 2400, 5289, 11661, 25718, 56728, 125125, 275973, 608663, 1342423, 2960792, 6530255, 14402991, 31766847, 70063951, 154530760, 340828154, 751720173, 1657971361, 3656771426, 8065263401, 17788497730
Offset: 1

Views

Author

R. H. Hardin, Dec 17 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..0..1. .0..1..0..1. .0..1..1..0. .0..1..1..0. .0..1..0..1
..0..1..0..0. .0..1..1..0. .0..0..0..1. .0..0..1..0. .1..0..1..0
..0..1..1..0. .0..0..1..0. .1..1..0..1. .0..1..0..1. .1..0..1..0
		

Crossrefs

Row 3 of A279709.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + 4*a(n-4) - a(n-5) - a(n-7) - a(n-8).
Empirical g.f.: x*(4 - 7*x + 4*x^2 + 3*x^3 - 8*x^4 - 5*x^6) / ((1 - x)*(1 + x)*(1 - 2*x - x^3)*(1 - x + x^2 + x^3)). - Colin Barker, Feb 11 2019

A279711 Number of 4Xn 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 13, 42, 125, 385, 1195, 3751, 11823, 37385, 118390, 375114, 1188640, 3766483, 11934903, 37818803, 119840838, 379760607, 1203429425, 3813594984, 12085090793, 38297085876, 121361690893, 384589567332, 1218746480798, 3862151137416
Offset: 1

Views

Author

R. H. Hardin, Dec 17 2016

Keywords

Comments

Row 4 of A279709.

Examples

			Some solutions for n=4
..0..1..0..0. .0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..1..0. .0..0..1..0. .0..1..1..0. .0..1..0..1. .0..1..0..0
..0..0..1..1. .1..0..0..1. .0..0..0..1. .1..0..0..1. .0..1..1..0
..1..0..0..1. .0..1..0..1. .1..1..0..1. .1..1..0..1. .1..0..1..0
		

Crossrefs

Cf. A279709.

Formula

Empirical: a(n) = 8*a(n-1) -24*a(n-2) +31*a(n-3) +2*a(n-4) -66*a(n-5) +96*a(n-6) -50*a(n-7) -14*a(n-8) -18*a(n-9) +77*a(n-10) +32*a(n-11) -243*a(n-12) +257*a(n-13) +22*a(n-14) -117*a(n-15) +3*a(n-16) -28*a(n-17) +17*a(n-18) +7*a(n-19) +5*a(n-20) +3*a(n-21) +a(n-23) for n>25

A279713 Number of 6Xn 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

32, 89, 617, 4121, 27346, 187484, 1302321, 9047660, 63213599, 442406441, 3101030424, 21754188219, 152697081771, 1072046362656, 7527092912305, 52849336285149, 371061151440456, 2605230414235195, 18291283568139799
Offset: 1

Views

Author

R. H. Hardin, Dec 17 2016

Keywords

Comments

Row 6 of A279709.

Examples

			Some solutions for n=4
..0..1..0..1. .0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..1..0. .0..0..0..1. .1..0..0..1. .0..1..0..1. .1..0..0..1
..1..0..1..0. .1..1..1..0. .1..1..0..1. .0..1..0..1. .1..0..1..0
..1..1..0..1. .0..0..1..0. .0..0..1..0. .0..0..1..1. .0..1..0..1
..0..1..0..0. .0..1..0..1. .1..1..0..0. .1..0..0..1. .1..0..0..1
..1..0..1..0. .1..0..1..0. .0..1..1..0. .1..1..0..1. .1..1..0..1
		

Crossrefs

Cf. A279709.

A279714 Number of 7Xn 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

64, 233, 2364, 23690, 230128, 2342179, 24137862, 248664928, 2581574414, 26840562087, 279459719148, 2912683048984, 30376974103087, 316936936604135, 3307484551114011, 34519765476263743, 360289224945339994
Offset: 1

Views

Author

R. H. Hardin, Dec 17 2016

Keywords

Comments

Row 7 of A279709.

Examples

			Some solutions for n=4
..0..1..0..0. .0..1..0..1. .0..1..0..1. .0..1..0..0. .0..1..0..0
..0..1..1..0. .1..0..0..1. .0..1..0..0. .0..1..1..1. .0..1..1..0
..0..1..0..0. .1..1..0..1. .0..1..1..1. .1..0..0..1. .1..0..0..1
..0..1..1..0. .1..0..0..1. .1..0..0..0. .1..0..1..1. .0..1..0..1
..1..0..0..1. .1..1..1..0. .0..1..1..0. .1..0..0..1. .0..1..0..1
..1..1..0..1. .0..0..1..0. .0..1..0..1. .1..0..1..0. .1..0..0..1
..1..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1. .1..1..0..1
		

Crossrefs

Cf. A279709.
Showing 1-10 of 12 results. Next