A279732 Lexicographically least strictly increasing sequence such that, for any n>0, Sum_{k=1..n} a(k) can be computed without carries in factorial base.
1, 2, 6, 8, 24, 30, 48, 120, 240, 720, 840, 1440, 1560, 5040, 10080, 15120, 40320, 45360, 80640, 120960, 362880, 403200, 725760, 1088640, 3628800, 3991680, 7257600, 7620480, 10886400, 39916800, 43545600, 79833600, 119750400, 159667200, 479001600, 958003200
Offset: 1
Examples
The first terms in base 10 and factorial base, alongside their partial sums in factorial base, are: n a(n) a(n) in fact. base Partial sum in fact. base -- --------- --------------------- ------------------------- 1 1 1 1 2 2 1,0 1,1 3 6 1,0,0 1,1,1 4 8 1,1,0 2,2,1 5 24 1,0,0,0 1,2,2,1 6 30 1,1,0,0 2,3,2,1 7 48 2,0,0,0 4,3,2,1 8 120 1,0,0,0,0 1,4,3,2,1 9 240 2,0,0,0,0 3,4,3,2,1 10 720 1,0,0,0,0,0 1,3,4,3,2,1 11 840 1,1,0,0,0,0 2,4,4,3,2,1 12 1440 2,0,0,0,0,0 4,4,4,3,2,1 13 1560 2,1,0,0,0,0 6,5,4,3,2,1 14 5040 1,0,0,0,0,0,0 1,6,5,4,3,2,1 15 10080 2,0,0,0,0,0,0 3,6,5,4,3,2,1 16 15120 3,0,0,0,0,0,0 6,6,5,4,3,2,1 17 40320 1,0,0,0,0,0,0,0 1,6,6,5,4,3,2,1 18 45360 1,1,0,0,0,0,0,0 2,7,6,5,4,3,2,1 19 80640 2,0,0,0,0,0,0,0 4,7,6,5,4,3,2,1 20 120960 3,0,0,0,0,0,0,0 7,7,6,5,4,3,2,1 21 362880 1,0,0,0,0,0,0,0,0 1,7,7,6,5,4,3,2,1 22 403200 1,1,0,0,0,0,0,0,0 2,8,7,6,5,4,3,2,1 23 725760 2,0,0,0,0,0,0,0,0 4,8,7,6,5,4,3,2,1 24 1088640 3,0,0,0,0,0,0,0,0 7,8,7,6,5,4,3,2,1 25 3628800 1,0,0,0,0,0,0,0,0,0 1,7,8,7,6,5,4,3,2,1 26 3991680 1,1,0,0,0,0,0,0,0,0 2,8,8,7,6,5,4,3,2,1 27 7257600 2,0,0,0,0,0,0,0,0,0 4,8,8,7,6,5,4,3,2,1 28 7620480 2,1,0,0,0,0,0,0,0,0 6,9,8,7,6,5,4,3,2,1 29 10886400 3,0,0,0,0,0,0,0,0,0 9,9,8,7,6,5,4,3,2,1 30 39916800 1,0,0,0,0,0,0,0,0,0,0 1,9,9,8,7,6,5,4,3,2,1 31 43545600 1,1,0,0,0,0,0,0,0,0,0 2,10,9,8,7,6,5,4,3,2,1 32 79833600 2,0,0,0,0,0,0,0,0,0,0 4,10,9,8,7,6,5,4,3,2,1 33 119750400 3,0,0,0,0,0,0,0,0,0,0 7,10,9,8,7,6,5,4,3,2,1 34 159667200 4,0,0,0,0,0,0,0,0,0,0 11,10,9,8,7,6,5,4,3,2,1
Links
Programs
-
Mathematica
r = MixedRadix[Reverse@ Range[2, 30]]; f[a_] := Function[w, Function[s, Total@ Map[PadLeft[#, s] &, w]]@ Max@ Map[Length, w]]@ Map[IntegerDigits[#, r] &, a]; g[w_] := Times @@ Boole@ MapIndexed[#1 <= First@ #2 &, Reverse@ w] > 0; a = {1}; Do[k = Max@ a + 1; While[! g@ f@ Join[a, {k}], k++]; AppendTo[a, k], {n, 2, 16}]; a (* Michael De Vlieger, Dec 18 2016 *)
Comments