cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279732 Lexicographically least strictly increasing sequence such that, for any n>0, Sum_{k=1..n} a(k) can be computed without carries in factorial base.

Original entry on oeis.org

1, 2, 6, 8, 24, 30, 48, 120, 240, 720, 840, 1440, 1560, 5040, 10080, 15120, 40320, 45360, 80640, 120960, 362880, 403200, 725760, 1088640, 3628800, 3991680, 7257600, 7620480, 10886400, 39916800, 43545600, 79833600, 119750400, 159667200, 479001600, 958003200
Offset: 1

Views

Author

Rémy Sigrist, Dec 18 2016

Keywords

Comments

This sequence is to factorial base what A278742 is to base 10.
This sequence contains the factorial numbers (A000142); the corresponding indices are 1, 2, 3, 5, 8, 10, 14, 17, 21, 25, 30, 35, 39, 45, 49, 56, 62, 67, 74, 79, 87, 93, 102, 108, 116, 122, 131, 138, 148, 155, ...
Occasionally, the sum of the first n terms equals A033312(k) for some k;
- In that case: a(n+1)=k!, and k! divides a(m) for any m>n,
- The corresponding indices are 1, 7, 13, 34, 44, 61, 73, 101, 115, 147, 343, 387, 487, 605, 657, 788, 1226, 1296, 1575, 2986, 3586, 5152, 5260, 8236, 9173, ...
- Conjecture: this happens infinitely often.

Examples

			The first terms in base 10 and factorial base, alongside their partial sums in factorial base, are:
n    a(n)        a(n) in fact. base      Partial sum in fact. base
--   ---------   ---------------------   -------------------------
1            1                       1                         1
2            2                     1,0                       1,1
3            6                   1,0,0                     1,1,1
4            8                   1,1,0                     2,2,1
5           24                 1,0,0,0                   1,2,2,1
6           30                 1,1,0,0                   2,3,2,1
7           48                 2,0,0,0                   4,3,2,1
8          120               1,0,0,0,0                 1,4,3,2,1
9          240               2,0,0,0,0                 3,4,3,2,1
10         720             1,0,0,0,0,0               1,3,4,3,2,1
11         840             1,1,0,0,0,0               2,4,4,3,2,1
12        1440             2,0,0,0,0,0               4,4,4,3,2,1
13        1560             2,1,0,0,0,0               6,5,4,3,2,1
14        5040           1,0,0,0,0,0,0             1,6,5,4,3,2,1
15       10080           2,0,0,0,0,0,0             3,6,5,4,3,2,1
16       15120           3,0,0,0,0,0,0             6,6,5,4,3,2,1
17       40320         1,0,0,0,0,0,0,0           1,6,6,5,4,3,2,1
18       45360         1,1,0,0,0,0,0,0           2,7,6,5,4,3,2,1
19       80640         2,0,0,0,0,0,0,0           4,7,6,5,4,3,2,1
20      120960         3,0,0,0,0,0,0,0           7,7,6,5,4,3,2,1
21      362880       1,0,0,0,0,0,0,0,0         1,7,7,6,5,4,3,2,1
22      403200       1,1,0,0,0,0,0,0,0         2,8,7,6,5,4,3,2,1
23      725760       2,0,0,0,0,0,0,0,0         4,8,7,6,5,4,3,2,1
24     1088640       3,0,0,0,0,0,0,0,0         7,8,7,6,5,4,3,2,1
25     3628800     1,0,0,0,0,0,0,0,0,0       1,7,8,7,6,5,4,3,2,1
26     3991680     1,1,0,0,0,0,0,0,0,0       2,8,8,7,6,5,4,3,2,1
27     7257600     2,0,0,0,0,0,0,0,0,0       4,8,8,7,6,5,4,3,2,1
28     7620480     2,1,0,0,0,0,0,0,0,0       6,9,8,7,6,5,4,3,2,1
29    10886400     3,0,0,0,0,0,0,0,0,0       9,9,8,7,6,5,4,3,2,1
30    39916800   1,0,0,0,0,0,0,0,0,0,0     1,9,9,8,7,6,5,4,3,2,1
31    43545600   1,1,0,0,0,0,0,0,0,0,0    2,10,9,8,7,6,5,4,3,2,1
32    79833600   2,0,0,0,0,0,0,0,0,0,0    4,10,9,8,7,6,5,4,3,2,1
33   119750400   3,0,0,0,0,0,0,0,0,0,0    7,10,9,8,7,6,5,4,3,2,1
34   159667200   4,0,0,0,0,0,0,0,0,0,0   11,10,9,8,7,6,5,4,3,2,1
		

Crossrefs

Programs

  • Mathematica
    r = MixedRadix[Reverse@ Range[2, 30]]; f[a_] := Function[w, Function[s, Total@ Map[PadLeft[#, s] &, w]]@ Max@ Map[Length, w]]@ Map[IntegerDigits[#, r] &, a]; g[w_] := Times @@ Boole@ MapIndexed[#1 <= First@ #2 &, Reverse@ w] > 0; a = {1}; Do[k = Max@ a + 1; While[! g@ f@ Join[a, {k}], k++]; AppendTo[a, k], {n, 2, 16}]; a (* Michael De Vlieger, Dec 18 2016 *)