A279741 T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 0, 0, 2, 2, 0, 2, 6, 8, 0, 5, 14, 35, 26, 0, 8, 26, 106, 168, 80, 0, 15, 48, 286, 736, 766, 240, 0, 26, 84, 746, 2948, 4940, 3402, 708, 0, 46, 146, 1887, 11434, 29140, 32430, 14827, 2062, 0, 80, 250, 4700, 42494, 167904, 281350, 209558, 63680, 5944, 0, 139
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..0. .0..1..0..0 ..1..0..1..0. .1..0..1..1. .1..0..1..0. .0..1..0..0. .0..1..1..0 ..0..1..1..0. .0..0..0..1. .0..1..1..0. .0..1..1..0. .1..0..0..0 ..0..1..0..1. .1..0..1..0. .0..0..1..1. .0..1..0..1. .0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Crossrefs
Row 1 is A006367(n-1).
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) -a(n-4)
k=3: a(n) = 10*a(n-1) -35*a(n-2) +54*a(n-3) -45*a(n-4) +20*a(n-5) -4*a(n-6) for n>7
k=4: [order 16] for n>17
k=5: [order 25] for n>26
k=6: [order 64] for n>65
Empirical for row n:
n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
n=2: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5)
n=3: [order 16] for n>18
n=4: [order 45] for n>50
Comments