cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279763 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(3*k-1)*(3*k-2)/2).

Original entry on oeis.org

1, 1, 21, 105, 535, 2670, 12996, 59546, 266875, 1161894, 4939778, 20528320, 83636061, 334496221, 1315381029, 5091782355, 19424086781, 73092029218, 271537720562, 996656173345, 3616680935702, 12983391870459, 46133749660407, 162337625047433, 565962994479384, 1955721907216420, 6701061533668542, 22774651422340672
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2016

Keywords

Comments

Euler transform of the dodecahedral numbers (A006566).

Crossrefs

Programs

  • Mathematica
    nmax=27; CoefficientList[Series[Product[1/(1 - x^k)^(k (3 k - 1) (3 k - 2)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(3*k-1)*(3*k-2)/2).
a(n) ~ exp(Zeta'(-1) + 9*Zeta(3) / (8*Pi^2) - Pi^16 / (9331200000*Zeta(5)^3) + Pi^8 * Zeta(3) / (648000*Zeta(5)^2) - Zeta(3)^2 / (270*Zeta(5)) + 9*Zeta'(-3)/2 + (-Pi^12/(10800000 * 2^(2/5) * 3^(3/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (900 * 2^(2/5) * 3^(3/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (36000 * 2^(4/5) * 3^(1/5) * Zeta(5)^(7/5)) + Zeta(3) / (2^(4/5) * 3^(6/5) * Zeta(5)^(2/5))) * n^(2/5) + (-Pi^4 / (60 * 2^(1/5) * 3^(4/5) * Zeta(5)^(3/5))) * n^(3/5) + ((5*3^(3/5) * Zeta(5)^(1/5)) / 2^(8/5)) * n^(4/5)) * 3^(131/400) * Zeta(5)^(131/1200) / (2^(169/600) * sqrt(5*Pi) * n^(731/1200)). - Vaclav Kotesovec, Nov 09 2017