cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279794 Number of Goldbach partitions (p,q) of 2n such that |p-q| > n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 2, 3, 2, 2, 2, 1, 3, 3, 1, 3, 3, 3, 3, 5, 3, 2, 4, 4, 2, 4, 3, 3, 4, 1, 3, 4, 2, 4, 4, 3, 4, 5, 4, 4, 6, 2, 3, 5, 2, 4, 5, 3, 3, 4, 3, 4, 5, 2, 2, 5, 2, 4, 5, 3, 4, 5, 3, 3, 8, 5, 3, 6, 4, 4, 8, 4, 4, 7, 3, 4, 6, 5, 6, 7, 5
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 18 2016

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): A279794:=n->add( (pi(i)-pi(i-1)) * (pi(2*n-i)-pi(2*n-i-1)) * (1-signum(floor(n/(2*(n-i))))), i=3..n-1): seq(A279794(n), n=1..100);
    # Alternative:
    f:= proc(n) local p;
       nops(select(t -> isprime(t) and isprime(2*n-t), [seq(p,p=3..(n-1)/2,2)]))
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 15 2021
  • Mathematica
    Table[Sum[Boole[PrimeQ@ i] Boole[PrimeQ[2 n - i]] (1 - Sign@ Floor[n/(2 (n - i))]), {i, 3, n - 1}], {n, 100}] (* Michael De Vlieger, Dec 21 2016 *)

Formula

a(n) = Sum_{i=3..n-1} A010051(i) * A010051(2n-i) * (1-sign(floor(n/(2*(n-i))))).