A279795 Numbers n such that F(n) and F(n-2) are both prime where F(n) = A000045(n).
5, 7, 13, 433, 571
Offset: 1
Examples
13 is a term because Fibonacci(13) = 233 and Fibonacci(11) = 89 are both prime.
Programs
-
Mathematica
Select[Range[10^4], Times @@ Boole@ Map[PrimeQ@ Fibonacci@ # &, {#, # - 2}] > 0 &] (* Michael De Vlieger, Jan 21 2017 *) Flatten[Position[Partition[Fibonacci[Range[580]],3,1],?(AllTrue[ {#[[1]],#[[3]]},PrimeQ]&),1,Heads->False]]+2 (* _Harvey P. Dale, Oct 01 2021 *)
-
PARI
isok(n) = isprime(fibonacci(n)) && isprime(fibonacci(n-2)); \\ Michel Marcus, Jan 14 2017
Formula
a(n) = A281087(n) + 2. - Bobby Jacobs, Jan 18 2017
Comments