A279816 Digital roots of tetrahedral numbers (A000292).
0, 1, 4, 1, 2, 8, 2, 3, 3, 3, 4, 7, 4, 5, 2, 5, 6, 6, 6, 7, 1, 7, 8, 5, 8, 9, 9, 9, 1, 4, 1, 2, 8, 2, 3, 3, 3, 4, 7, 4, 5, 2, 5, 6, 6, 6, 7, 1, 7, 8, 5, 8, 9, 9, 9, 1, 4, 1, 2, 8, 2, 3, 3, 3, 4, 7, 4, 5, 2, 5, 6, 6, 6, 7, 1, 7, 8, 5, 8, 9, 9, 9, 1, 4, 1, 2, 8, 2, 3, 3, 3, 4, 7, 4, 5, 2, 5, 6, 6, 6, 7, 1, 7, 8, 5, 8, 9, 9, 9
Offset: 0
Examples
a(6) = 2 because the 6th tetrahedral number is 56, 5 + 6 = 11 -> 1 + 1 = 2.
Links
- Eric Weisstein's World of Mathematics, Digital Root
- Eric Weisstein's World of Mathematics, Tetrahedral Number
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1,0,-1,1).
Programs
-
Mathematica
Join[{0}, Table[n (n + 1) (n + 2)/6 - 9 Floor[(n - 1) (n^2 + 4 n + 6)/54], {n, 108}]] Join[{0}, LinearRecurrence[{1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1}, {1, 4, 1, 2, 8, 2, 3, 3, 3, 4, 7, 4, 5, 2, 5, 6, 6, 6, 7, 1, 7, 8, 5, 8, 9}, 108]]
Comments