A279821 Composite numbers m with sqrt(m) not prime such that T(m) == 1 (mod m), where the central trinomial coefficient T(m) is the coefficient of x^m in the expansion of (x^2+x+1)^m.
12, 30, 902, 1360, 2450, 3730, 21475, 74945, 82208, 88282, 254677
Offset: 1
Examples
a(1) = 12 since T(12) = 73789 = 1 + 12*6149.
Links
- Zhi-Wei Sun, Supercongruences involving Lucas sequences, arXiv:1610.03384 [math.NT], 2016.
- Zhi-Wei Sun, Characterizing primes via central trinomial coefficients, a Message to Number Theory List, Dec. 7, 2016.
Programs
-
Mathematica
T[0]=1; T[1]=1; T[n_]:=T[n]=((2n-1)T[n-1]+3(n-1)T[n-2])/n; n=0;Do[If[PrimeQ[m]==False&&PrimeQ[Sqrt[m]]==False&&Mod[T[m]-1,m]==0,n=n+1;Print[n," ",m]],{m,2,300000}]
Comments