cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A279833 Denominators of the coefficients in g.f. A(x) such that: sn(x,i*A(x)) = x, where i^2 = -1, and sn(x,k) is a Jacobi elliptic function.

Original entry on oeis.org

1, 10, 200, 14000, 112000, 5605600000, 16016000000, 133413280000000, 10673062400000000, 156146902912000000000, 3690744977920000000000, 13072618711792640000000000, 201117210950656000000000000, 58382315166865930240000000000000, 2835712450962059468800000000000000
Offset: 0

Views

Author

Paul D. Hanna, Dec 21 2016

Keywords

Comments

Numerators are given by A279832.

Examples

			This sequence gives the denominators of the coefficients in g.f. A(x), such that
A(x) = 1 + 3/10*x^2 + 27/200*x^4 + 1129/14000*x^6 + 6177/112000*x^8 + 228496227/5605600000*x^10 + 507769159/16016000000*x^12 + 3411091723167/133413280000000*x^14 + 226108446954939/10673062400000000*x^16 + 2799063804718849119/156146902912000000000*x^18 + 56928279095622876861/3690744977920000000000*x^20 + 175898907783132547767087/13072618711792640000000000*x^22 + 2387767743416733035533529/201117210950656000000000000*x^24 + 617528637834242429324813087883/58382315166865930240000000000000*x^26 + 26943941094191660800993918030539/2835712450962059468800000000000000*x^28 + 4813884370789026772162811298692933153/559968137691477883303936000000000000000*x^30 +...
satisfies: sn(x,i*A(x)) = x.
RELATED SERIES.
The Jacobi elliptic function sn(x,k) begins:
sn(x,k) = x - (k^2 + 1)*x^3/3! + (k^4 + 14*k^2 + 1)*x^5/5! - (k^6 + 135*k^4 + 135*k^2 + 1)*x^7/7! + (k^8 + 1228*k^6 + 5478*k^4 + 1228*k^2 + 1)*x^9/9! - (k^10 + 11069*k^8 + 165826*k^6 + 165826*k^4 + 11069*k^2 + 1)*x^11/11! + (k^12 + 99642*k^10 + 4494351*k^8 + 13180268*k^6 + 4494351*k^4 + 99642*k^2 + 1)*x^13/13! - (k^14 + 896803*k^12 + 116294673*k^10 + 834687179*k^8 + 834687179*k^6 + 116294673*k^4 + 896803*k^2 + 1)*x^15/15! +...
which equals x when k = i*A(x).
A real transformation of the imaginary modulus i*A(x) yields the series:
A(x)/sqrt(1 + A(x)^2) = sqrt(1/2)*(1 + 3/20*x^2 + 27/800*x^4 + 1681/112000*x^6 + 11667/1280000*x^8 + 45274443/7175168000*x^10 + 613581239/130457600000*x^12 + 62857335822759/17076899840000000*x^14 + 8148919947718779/2732303974400000000*x^16 + 198293692034112113343/79947214290944000000000*x^18 + 4605729854262557732997/2188029022699520000000000*x^20 + 243052910628213000290505027/133863615608756633600000000000*x^22 + 38893821159628323146146353/24505925054234624000000000000*x^24 +...).
sn(2*x, i*A(x)) = 2*x*sqrt(1-x^2)*sqrt(1 + x^2*A(x)^2)/(1 + x^4*A(x)^2) where
sn(2*x, i*A(x)) = 2*x - 12/5*x^5 - 36/25*x^7 + 1332/875*x^9 + 9984/4375*x^11 - 5136624/21896875*x^13 - 266818932/109484375*x^15 - 77131141044/65143203125*x^17 + 33379542432/19159765625*x^19 + 304830773316936/140153685546875*x^21 - 77528188053360024/154869822529296875*x^23 - 145014068636962776/58668332769921875*x^25 +...
The series y = sn(x/2, i*A(x)) satisfies:
x^2*(1 + A(x)^2*y^4)^2  =  4*y^2*(1-y^2)*(1 + A(x)^2*y^2)
where the series y begins:
sn(x/2, i*A(x)) = 1/2*x + 3/320*x^5 + 9/1600*x^7 + 14013/3584000*x^9 + 3729/1280000*x^11 + 6533718813/2870067200000*x^13 + 2402215119/1304576000000*x^15 + 1670885671753959/1092921589760000000*x^17 + 252839176306947/195164569600000000*x^19 + 1427498770243103841051/1279155428655104000000000*x^21 + 4263718777800583142667/4376058045399040000000000*x^23 + 147404533631490298403307261/171345427979208491008000000000*x^25 +...
		

Crossrefs

Programs

  • PARI
    /* Code to list first N nonzero terms of vector A: */ {N=20;
    /* Generate 2*N terms of Jacobi Elliptic Function SN: */
    SN = serreverse(intformal(1/sqrt((1-x^2)*(1-k^2*x^2) +x*O(x^(2*N+2))) ));
    /* Print N terms of this sequence: */
    A=[1]; print1(A[1],", ");
    for(i=1,N, A = concat(A,[0,0]);
    A[#A] = 3*polcoeff(x - subst(SN,k,I*Ser(A)),#A+2);
    print1( denominator(A[#A]),", ") );}

Formula

G.f. A = A(x) satisfies:
(1) sd( x*sqrt(1+A^2), A/sqrt(1+A^2) ) = x*sqrt(1+A^2), where sd(x,k) = sn(x,k)/dn(x,k) is a Jacobi elliptic function.
(2) sn(2*x, i*A(x)) = 2*x*sqrt(1-x^2)*sqrt(1 + x^2*A^2)/(1 + x^4*A^2).
(3) y = sn(x/2, i*A(x)) is a solution to the equation:
x^2*(1 + A^2*y^4)^2 = 4*y^2*(1-y^2)*(1 + A^2*y^2).

A279834 Numerators of the coefficients in g.f. A(x) such that: sn(x,-A(x)) = x, where sn(x,m) is a Jacobi elliptic function.

Original entry on oeis.org

1, 3, 9, 212, 774, 2986491, 11962183, 5866732236, 24717532254, 155049859325162, 8766713183100126, 1242400321151564076, 157798597956508868, 141417442289739551841, 3032690837599386922473477, 272243517649610491264579553148, 1244664961615535298800024043306
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2016

Keywords

Comments

Denominators are given by A279835.
The g.f. A(x) of this sequence equals the square of the g.f. of A279832.

Examples

			This sequence gives the numerators of the coefficients in g.f. A(x), such that
A(x) = 1 + 3/5*x^2 + 9/25*x^4 + 212/875*x^6 + 774/4375*x^8 + 2986491/21896875*x^10 + 11962183/109484375*x^12 + 5866732236/65143203125*x^14 + 24717532254/325716015625*x^16 + 155049859325162/2382612654296875*x^18 + 8766713183100126/154869822529296875*x^20 + 1242400321151564076/24934041427216796875*x^22 + 157798597956508868/3562005918173828125*x^24 + 141417442289739551841/3559956170522705078125*x^26 + 3032690837599386922473477/84510816662372930908203125*x^28 + 272243517649610491264579553148/8344175483159391333221435546875*x^30 + 1244664961615535298800024043306/41720877415796956666107177734375*x^32 + 309586737719752481090144972054844018/11291964076972525306465238189697265625*x^34 + 1428965605601484765267196303905398982/56459820384862626532326190948486328125*x^36 + 1900644020251253780726568413610042774696/81019842252277869073888084011077880859375*x^38 + 10448090522732112432951611797351884498204/478753613308914680891156860065460205078125*x^40 +...
satisfies: sn(x,-A(x)) = x.
RELATED SERIES.
The Jacobi elliptic function sn(x,m) begins:
sn(x,m) = x - (m + 1)*x^3/3! + (m^2 + 14*m + 1)*x^5/5! - (m^3 + 135*m^2 + 135*m + 1)*x^7/7! + (m^4 + 1228*m^3 + 5478*m^2 + 1228*m + 1)*x^9/9! - (m^5 + 11069*m^4 + 165826*m^3 + 165826*m^2 + 11069*m + 1)*x^11/11! + (m^6 + 99642*m^5 + 4494351*m^4 + 13180268*m^3 + 4494351*m^2 + 99642*m + 1)*x^13/13! - (m^7 + 896803*m^6 + 116294673*m^5 + 834687179*m^4 + 834687179*m^3 + 116294673*m^2 + 896803*m + 1)*x^15/15! +...
which equals x when m = -A(x).
		

Crossrefs

Programs

  • PARI
    /* Code to list first N nonzero terms of vector A: */ {N=20;
    /* Generate 2*N terms of Jacobi Elliptic Function SN: */
    SN = serreverse(intformal(1/sqrt((1-x^2)*(1-m*x^2) +x*O(x^(2*N+2))) ));
    /* Print N terms of this sequence: */
    A=[1]; print1(A[1], ", ");
    for(i=1, N, A = concat(A, [0, 0]);
    A[#A] = 6*polcoeff(x - subst(SN, m, -Ser(A)), #A+2);
    print1( numerator(A[#A]), ", ") ); }

Formula

G.f. A = A(x) satisfies:
(1) sd( x*sqrt(1+A), A/(1+A) ) = x*sqrt(1+A), where sd(x,m) = sn(x,m)/dn(x,m) is a Jacobi elliptic function.
(2) sn(2*x, -A(x)) = 2*x*sqrt(1-x^2)*sqrt(1 + x^2*A)/(1 + x^4*A).
(3) y = sn(x/2, -A(x)) is a solution to the equation:
x^2*(1 + A*y^4)^2 = 4*y^2*(1-y^2)*(1 + A*y^2).

A279835 Denominators of the coefficients in g.f. A(x) such that: sn(x,-A(x)) = x, where sn(x,m) is a Jacobi elliptic function.

Original entry on oeis.org

1, 5, 25, 875, 4375, 21896875, 109484375, 65143203125, 325716015625, 2382612654296875, 154869822529296875, 24934041427216796875, 3562005918173828125, 3559956170522705078125, 84510816662372930908203125, 8344175483159391333221435546875, 41720877415796956666107177734375, 11291964076972525306465238189697265625
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2016

Keywords

Comments

Numerators are given by A279834.
The g.f. A(x) of this sequence equals the square of the g.f. of A279832.

Examples

			This sequence gives the denominators of the coefficients in g.f. A(x), such that
A(x) = 1 + 3/5*x^2 + 9/25*x^4 + 212/875*x^6 + 774/4375*x^8 + 2986491/21896875*x^10 + 11962183/109484375*x^12 + 5866732236/65143203125*x^14 + 24717532254/325716015625*x^16 + 155049859325162/2382612654296875*x^18 + 8766713183100126/154869822529296875*x^20 + 1242400321151564076/24934041427216796875*x^22 + 157798597956508868/3562005918173828125*x^24 + 141417442289739551841/3559956170522705078125*x^26 + 3032690837599386922473477/84510816662372930908203125*x^28 + 272243517649610491264579553148/8344175483159391333221435546875*x^30 + 1244664961615535298800024043306/41720877415796956666107177734375*x^32 + 309586737719752481090144972054844018/11291964076972525306465238189697265625*x^34 + 1428965605601484765267196303905398982/56459820384862626532326190948486328125*x^36 + 1900644020251253780726568413610042774696/81019842252277869073888084011077880859375*x^38 + 10448090522732112432951611797351884498204/478753613308914680891156860065460205078125*x^40 +...
satisfies: sn(x,-A(x)) = x.
RELATED SERIES.
The Jacobi elliptic function sn(x,m) begins:
sn(x,m) = x - (m + 1)*x^3/3! + (m^2 + 14*m + 1)*x^5/5! - (m^3 + 135*m^2 + 135*m + 1)*x^7/7! + (m^4 + 1228*m^3 + 5478*m^2 + 1228*m + 1)*x^9/9! - (m^5 + 11069*m^4 + 165826*m^3 + 165826*m^2 + 11069*m + 1)*x^11/11! + (m^6 + 99642*m^5 + 4494351*m^4 + 13180268*m^3 + 4494351*m^2 + 99642*m + 1)*x^13/13! - (m^7 + 896803*m^6 + 116294673*m^5 + 834687179*m^4 + 834687179*m^3 + 116294673*m^2 + 896803*m + 1)*x^15/15! +...
which equals x when m = -A(x).
		

Crossrefs

Programs

  • PARI
    /* Code to list first N nonzero terms of vector A: */ {N=20;
    /* Generate 2*N terms of Jacobi Elliptic Function SN: */
    SN = serreverse(intformal(1/sqrt((1-x^2)*(1-m*x^2) +x*O(x^(2*N+2))) ));
    /* Print N terms of this sequence: */
    A=[1]; print1(A[1], ", ");
    for(i=1, N, A = concat(A, [0, 0]);
    A[#A] = 6*polcoeff(x - subst(SN, m, -Ser(A)), #A+2);
    print1( denominator(A[#A]), ", ") ); }

Formula

G.f. A = A(x) satisfies:
(1) sd( x*sqrt(1+A), A/(1+A) ) = x*sqrt(1+A), where sd(x,m) = sn(x,m)/dn(x,m) is a Jacobi elliptic function.
(2) sn(2*x, -A(x)) = 2*x*sqrt(1-x^2)*sqrt(1 + x^2*A)/(1 + x^4*A).
(3) y = sn(x/2, -A(x)) is a solution to the equation:
x^2*(1 + A*y^4)^2 = 4*y^2*(1-y^2)*(1 + A*y^2).
Showing 1-3 of 3 results.