cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279834 Numerators of the coefficients in g.f. A(x) such that: sn(x,-A(x)) = x, where sn(x,m) is a Jacobi elliptic function.

Original entry on oeis.org

1, 3, 9, 212, 774, 2986491, 11962183, 5866732236, 24717532254, 155049859325162, 8766713183100126, 1242400321151564076, 157798597956508868, 141417442289739551841, 3032690837599386922473477, 272243517649610491264579553148, 1244664961615535298800024043306
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2016

Keywords

Comments

Denominators are given by A279835.
The g.f. A(x) of this sequence equals the square of the g.f. of A279832.

Examples

			This sequence gives the numerators of the coefficients in g.f. A(x), such that
A(x) = 1 + 3/5*x^2 + 9/25*x^4 + 212/875*x^6 + 774/4375*x^8 + 2986491/21896875*x^10 + 11962183/109484375*x^12 + 5866732236/65143203125*x^14 + 24717532254/325716015625*x^16 + 155049859325162/2382612654296875*x^18 + 8766713183100126/154869822529296875*x^20 + 1242400321151564076/24934041427216796875*x^22 + 157798597956508868/3562005918173828125*x^24 + 141417442289739551841/3559956170522705078125*x^26 + 3032690837599386922473477/84510816662372930908203125*x^28 + 272243517649610491264579553148/8344175483159391333221435546875*x^30 + 1244664961615535298800024043306/41720877415796956666107177734375*x^32 + 309586737719752481090144972054844018/11291964076972525306465238189697265625*x^34 + 1428965605601484765267196303905398982/56459820384862626532326190948486328125*x^36 + 1900644020251253780726568413610042774696/81019842252277869073888084011077880859375*x^38 + 10448090522732112432951611797351884498204/478753613308914680891156860065460205078125*x^40 +...
satisfies: sn(x,-A(x)) = x.
RELATED SERIES.
The Jacobi elliptic function sn(x,m) begins:
sn(x,m) = x - (m + 1)*x^3/3! + (m^2 + 14*m + 1)*x^5/5! - (m^3 + 135*m^2 + 135*m + 1)*x^7/7! + (m^4 + 1228*m^3 + 5478*m^2 + 1228*m + 1)*x^9/9! - (m^5 + 11069*m^4 + 165826*m^3 + 165826*m^2 + 11069*m + 1)*x^11/11! + (m^6 + 99642*m^5 + 4494351*m^4 + 13180268*m^3 + 4494351*m^2 + 99642*m + 1)*x^13/13! - (m^7 + 896803*m^6 + 116294673*m^5 + 834687179*m^4 + 834687179*m^3 + 116294673*m^2 + 896803*m + 1)*x^15/15! +...
which equals x when m = -A(x).
		

Crossrefs

Programs

  • PARI
    /* Code to list first N nonzero terms of vector A: */ {N=20;
    /* Generate 2*N terms of Jacobi Elliptic Function SN: */
    SN = serreverse(intformal(1/sqrt((1-x^2)*(1-m*x^2) +x*O(x^(2*N+2))) ));
    /* Print N terms of this sequence: */
    A=[1]; print1(A[1], ", ");
    for(i=1, N, A = concat(A, [0, 0]);
    A[#A] = 6*polcoeff(x - subst(SN, m, -Ser(A)), #A+2);
    print1( numerator(A[#A]), ", ") ); }

Formula

G.f. A = A(x) satisfies:
(1) sd( x*sqrt(1+A), A/(1+A) ) = x*sqrt(1+A), where sd(x,m) = sn(x,m)/dn(x,m) is a Jacobi elliptic function.
(2) sn(2*x, -A(x)) = 2*x*sqrt(1-x^2)*sqrt(1 + x^2*A)/(1 + x^4*A).
(3) y = sn(x/2, -A(x)) is a solution to the equation:
x^2*(1 + A*y^4)^2 = 4*y^2*(1-y^2)*(1 + A*y^2).