A279887 Number of tilings of a sphinx of order n by elementary sphinxes (i.e., sphinxes of order 1).
1, 1, 4, 16, 153, 71838, 5965398, 2614508085, 9822629511079, 28751930151895611, 162231215752303027270, 32813942272624544838651213, 1257159787425487037702548758466
Offset: 1
Examples
For n=2, a(2)=1 and this single tiling of an order-2 L-sphinx with three elementary R-sphinxes and one elementary L-sphinx is shown in the Wikiwand link.
References
- A. Martin, "The Sphinx Task Centre Problem" in C. Pritchard (ed.) The Changing Shape of Geometry, Cambridge Univ. Press, 2003, 371-378.
Links
- Greg Huber, Craig Knecht, Walter Trump, and Robert M. Ziff, Riddles of the sphinx tilings, arXiv:2304.14388 [cond-mat.stat-mech], 2023.
- Greg Huber, Craig Knecht, Walter Trump, and Robert M. Ziff, Entropy and chirality in sphinx tilings, Phys. Rev. Res., 6 (2024), 013227.
- J.-Y. Lee and R. V. Moody, Lattice Substitution Systems and Model Sets, arXiv:math/0002019 [math.MG], 2000.
- J.-Y. Lee and R. V. Moody, Lattice Substitution Systems and Model Sets, Discrete Comput. Geom., 25 (2001), 173-201.
- Mathematics Task Centre, Task166.
- Walter Trump, The Dangler Method
- University of Bielefeld Tilings, Sphinx.
- Wikipedia, Sphinx tiling.
- Wikiwand, Sphinx Tiling.
Crossrefs
Cf. A004003.
Extensions
a(9) from Greg Huber, Mar 10 2017
a(10)-a(11) from Greg Huber, May 10 2017
a(11) corrected by Walter Trump, Feb 25 2022
a(12)-a(13) from Walter Trump, Feb 25 2022
Comments