A279905 Number of 2 X 2 matrices with entries in {0,1,...,n} and odd trace with no elements repeated.
0, 0, 0, 16, 72, 216, 480, 960, 1680, 2800, 4320, 6480, 9240, 12936, 17472, 23296, 30240, 38880, 48960, 61200, 75240, 91960, 110880, 133056, 157872, 186576, 218400, 254800, 294840, 340200, 389760, 445440, 505920, 573376, 646272, 727056, 813960, 909720
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Crossrefs
Cf. A210379 (where all elements can be repeated).
Programs
-
Mathematica
LinearRecurrence[{2,2,-6,0,6,-2,-2,1}, {0,0,0,16,72,216,480,960}, 50] (* G. C. Greubel, Dec 26 2016 *)
-
PARI
concat(vector(3), Vec(8*x^3*(2 + 5*x + 5*x^2) / ((1 - x)^5*(1 + x)^3) + O(x^50))) \\ Colin Barker, Dec 26 2016
-
PARI
concat([0,0,0], Vec(8*x^3*(2 + 5*x + 5*x^2) / ((1 - x)^5*(1 + x)^3) + O(x^50))) \\ G. C. Greubel, Dec 26 2016
-
Python
def a(n): s=0 for a in range(0,n+1): for b in range(0,n+1): if a!=b: for c in range(0,n+1): if a!=c and b!=c: for d in range(0,n+1): if d!=a and d!=b and d!=c: if (a+d)%2==1: s+=1 return s print([a(n) for n in range(41)])
-
Python
def a(n): return ((n-3)*(n-2)*(2*n**2+(-1)**n-1))//4
Formula
a(n) = ((n-2)*(n-1)*(2*(n+1)^2-(-1)^n-1))/4 for n>=0 .
From Colin Barker, Dec 26 2016: (Start)
a(n) = (n^4 - n^3 - 4*n^2 + 4*n)/2 for n even.
a(n) = (n^4 - n^3 - 3*n^2 + n + 2)/2 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>7.
G.f.: 8*x^3*(2 + 5*x + 5*x^2) / ((1 - x)^5*(1 + x)^3).
(End)
E.g.f.: (1/4)*((-2 - 2*x - x^2)*exp(-x) + (2 -2*x + x^2 + 10*x^3 + 2*x^4 )*exp(x)). - G. C. Greubel, Dec 26 2016