cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279905 Number of 2 X 2 matrices with entries in {0,1,...,n} and odd trace with no elements repeated.

Original entry on oeis.org

0, 0, 0, 16, 72, 216, 480, 960, 1680, 2800, 4320, 6480, 9240, 12936, 17472, 23296, 30240, 38880, 48960, 61200, 75240, 91960, 110880, 133056, 157872, 186576, 218400, 254800, 294840, 340200, 389760, 445440, 505920, 573376, 646272, 727056, 813960, 909720
Offset: 0

Views

Author

Indranil Ghosh, Dec 26 2016

Keywords

Crossrefs

Cf. A210379 (where all elements can be repeated).

Programs

  • Mathematica
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1}, {0,0,0,16,72,216,480,960}, 50] (* G. C. Greubel, Dec 26 2016 *)
  • PARI
    concat(vector(3), Vec(8*x^3*(2 + 5*x + 5*x^2) / ((1 - x)^5*(1 + x)^3) + O(x^50))) \\ Colin Barker, Dec 26 2016
    
  • PARI
    concat([0,0,0], Vec(8*x^3*(2 + 5*x + 5*x^2) / ((1 - x)^5*(1 + x)^3) + O(x^50))) \\ G. C. Greubel, Dec 26 2016
  • Python
    def a(n):
        s=0
        for a in range(0,n+1):
            for b in range(0,n+1):
                if a!=b:
                    for c in range(0,n+1):
                        if a!=c and b!=c:
                            for d in range(0,n+1):
                                if d!=a and d!=b and d!=c:
                                    if (a+d)%2==1:
                                        s+=1
        return s
    print([a(n) for n in range(41)])
    
  • Python
    def a(n):
        return ((n-3)*(n-2)*(2*n**2+(-1)**n-1))//4
    

Formula

a(n) = ((n-2)*(n-1)*(2*(n+1)^2-(-1)^n-1))/4 for n>=0 .
From Colin Barker, Dec 26 2016: (Start)
a(n) = (n^4 - n^3 - 4*n^2 + 4*n)/2 for n even.
a(n) = (n^4 - n^3 - 3*n^2 + n + 2)/2 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>7.
G.f.: 8*x^3*(2 + 5*x + 5*x^2) / ((1 - x)^5*(1 + x)^3).
(End)
E.g.f.: (1/4)*((-2 - 2*x - x^2)*exp(-x) + (2 -2*x + x^2 + 10*x^3 + 2*x^4 )*exp(x)). - G. C. Greubel, Dec 26 2016