cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279910 a(n) = Sum_{k=1..n} prime(k+1)*floor(n/prime(k+1)).

Original entry on oeis.org

0, 0, 3, 3, 8, 11, 18, 18, 21, 26, 37, 40, 53, 60, 68, 68, 85, 88, 107, 112, 122, 133, 156, 159, 164, 177, 180, 187, 216, 224, 255, 255, 269, 286, 298, 301, 338, 357, 373, 378, 419, 429, 472, 483, 491, 514, 561, 564, 571, 576, 596, 609, 662, 665, 681, 688, 710, 739, 798, 806, 867, 898, 908, 908, 926, 940, 1007, 1024, 1050, 1062
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 24 2016

Keywords

Comments

Sum of all odd prime divisors of all positive integers <= n.

Examples

			For n = 7 the odd prime divisors of the first seven positive integers are {0}, {0}, {3}, {0}, {5}, {3}, {7} so a(7) = 0 + 0 + 3 + 0 + 5 + 3 + 7 = 18.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Prime[k + 1] Floor[n/Prime[k + 1]], {k, 1, n}], {n, 70}]
    Rest[nmax = 70; CoefficientList[Series[(1/(1 - x)) Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k]), {k, 2, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: (1/(1 - x))*Sum_{k>=2} prime(k)*x^prime(k)/(1 - x^prime(k)).
a(n) = -2*floor(n/2) + Sum_{k=1..n} prime(k)*floor(n/prime(k)) .
a(n) = A024924(n) - A052928(n).