A279928 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1+x^j)^(j*k) in powers of x.
1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -1, -2, 0, 1, -4, 0, -2, 1, 0, 1, -5, 2, -1, 7, 0, 0, 1, -6, 5, 0, 15, 2, 4, 0, 1, -7, 9, 0, 23, -3, 10, 2, 0, 1, -8, 14, -2, 30, -20, 8, -8, 8, 0, 1, -9, 20, -7, 36, -51, 2, -42, 5, -2, 0, 1, -10, 27, -16, 42, -96, 5, -88, 6
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 0, -1, -2, -3, -4, ... 0, -1, -1, 0, 2, ... 0, -2, -2, -1, 0, ... 0, 1, 7, 15, 23, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
G.f. of column k: Product_{j>=1} 1/(1+x^j)^(j*k).