cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279929 Expansion of c(q)*c(q^2)/9 - c(q^3)*c(q^6)/3 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, 1, 0, 1, 6, 0, 8, 1, 0, 6, 12, 0, 14, 8, 0, 1, 18, 0, 20, 6, 0, 12, 24, 0, 31, 14, 0, 8, 30, 0, 32, 1, 0, 18, 48, 0, 38, 20, 0, 6, 42, 0, 44, 12, 0, 24, 48, 0, 57, 31, 0, 14, 54, 0, 72, 8, 0, 30, 60, 0, 62, 32, 0, 1, 84, 0, 68, 18, 0, 48, 72, 0, 74, 38, 0
Offset: 1

Views

Author

Michael Somos, Apr 11 2017

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + q^2 + q^4 + 6*q^5 + 8*q^7 + q^8 + 6*q^10 + 12*q^11 + 14*q^13 + ...
		

Crossrefs

Cf. A281786.

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(18), 2), 75); A[2] +A[3] +A[5] +6*A[6];
  • Mathematica
    a[ n_] := If[ n < 1, 0, Times @@ (Which[ # < 3, 1, # == 3, 0, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger @ n)];
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A)) - 3 * x^2 * (eta(x^9 + A) * eta(x^18 + A))^3 / (eta(x^3 + A) * eta(x^6 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, 0, (p^(e+1) - 1) / (p - 1))))};
    

Formula

Expansion of (2*a(q)^2 - a(q)*a(q^2) - 4*a(q^2)^2 + 3*a(q^3)*a(q^6)) / 18 in powers of q where a() is a cubic AGM theta function.
Expansion of (eta(q^3) * eta(q^6))^3 / (eta(q) * eta(q^2)) - 3 * (eta(q^9) * eta(q^18))^3 / (eta(q^3) * eta(q^6)) in powers of q.
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 0^e, a(p^e) = (p^(e+1) - 1) / (p-1) if p>3.
G.f. is a period 1 Fourier series that satisfies f(-1 / (18 t)) = 2 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A281786.
a(2*n) = a(n). a(3*n) = 0.
From Amiram Eldar, Oct 23 2023: (Start)
Dirichlet g.f.: zeta(s-1) * zeta(s) * (1 - 2^(1-s)) * (1 - 3^(1-s)) * (1 - 3^(-s)).
Sum_{k=1..n} a(k) ~ (2*Pi^2/81) * n^2. (End)