cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279946 Numbers that are both dodecagonal and centered heptagonal.

Original entry on oeis.org

1, 10396, 326656, 2619897841, 82318050361, 660219495802336, 20744313326831116, 166376633378560463881, 5227608446905776928921, 41927244364003774523222476, 1317367783816405284315203776, 10565749434051302554022550018121, 331979316252074156011094205115681
Offset: 1

Views

Author

Ann Skoryk, Dec 23 2016

Keywords

Comments

From Jon E. Schoenfield, Dec 24 2016: (Start)
Intersection of dodecagonal numbers A051624 and centered heptagonal numbers A069099. A051624(j) = j(5j - 4), A069099(k) = (7*k^2 - 7^k + 2)/2, and the table below gives indices j and k at which A051624(j) = A069099(k):
.
n a(n) j k
= ================= ======== ========
1 1 1 0, 1
2 10396 46 55
3 326656 256 306
4 2619897841 22891 27360
5 82318050361 128311 153361
6 660219495802336 11491036 13734415
7 20744313326831116 64411666 76986666
... (End)

Examples

			From _Jon E. Schoenfield_, Dec 24 2016: (Start)
10396 is both the 46th dodecagonal number and the 55th centered heptagonal number: A051624(46) = 46(5*46 - 4) = 10396 and A069099(55) = (7*55^2 - 7*55 + 2)/2 = 10396.
A051624(256) = 256(5*256 - 4) = 326656 = (7*306^2 - 7*306 + 2)/2 = A069099(306). (End)
		

References

  • F. Tapson (1999). The Oxford Mathematics Study Dictionary (2nd ed.). Oxford University Press. pp. 88-89.

Crossrefs

Cf. dodecagonal numbers A051624, centered heptagonal numbers A069099.

Programs

  • Mathematica
    LinearRecurrence[{1,252002,-252002,-1,1},{1,10396,326656,2619897841,82318050361},20] (* Harvey P. Dale, Jul 06 2021 *)
  • PARI
    Vec(x*(1 + 10395*x + 64258*x^2 + 10395*x^3 + x^4) / ((1 - x)*(1 - 502*x + x^2)*(1 + 502*x + x^2)) + O(x^20)) \\ Colin Barker, Dec 24 2016

Formula

Empirical: a(1)=1, a(2)=10396, a(3)=326656, a(4)=2619897841, a(n) = 252002*a(n-2) - a(n-4) + 85050 for n > 4. - Jon E. Schoenfield, Dec 24 2016
G.f.: x*(1 + 10395*x + 64258*x^2 + 10395*x^3 + x^4) / ((1 - x)*(1 - 502*x + x^2)*(1 + 502*x + x^2)). - Colin Barker, Dec 24 2016