cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280059 Number of 2 X 2 matrices having all elements in {-n,..,0,..,n} with determinant = permanent.

Original entry on oeis.org

1, 45, 225, 637, 1377, 2541, 4225, 6525, 9537, 13357, 18081, 23805, 30625, 38637, 47937, 58621, 70785, 84525, 99937, 117117, 136161, 157165, 180225, 205437, 232897, 262701, 294945, 329725, 367137, 407277, 450241, 496125
Offset: 0

Views

Author

Indranil Ghosh, Dec 25 2016

Keywords

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    Table[16*(n+1)^3 - 28*(n+1)^2 + 16*(n+1) - 3, {n,0,50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 45, 225, 637}, 50] (* G. C. Greubel, Dec 25 2016 *)
  • PARI
    for(n=0, 50, print1(16*(n+1)^3 - 28*(n+1)^2 + 16*(n+1) - 3, ", ")) \\ G. C. Greubel, Dec 25 2016

Formula

a(n) = 16*(n+1)^3 - 28*(n+1)^2 + 16*(n+1) - 3 for n>0.
From G. C. Greubel, Dec 25 2016: (Start)
G.f.: (1 + 41*x + 51*x^2 + 3*x^3)/(1 - x)^4.
E.g.f.: (1 + 44*x + 68*x^2 + 16*x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)