A280069 T(n,k)=Number of nXk 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 5, 4, 3, 5, 9, 15, 15, 9, 5, 8, 19, 39, 52, 39, 19, 8, 13, 41, 104, 170, 170, 104, 41, 13, 21, 88, 281, 603, 790, 603, 281, 88, 21, 34, 189, 771, 2157, 3729, 3729, 2157, 771, 189, 34, 55, 406, 2122, 7777, 17468, 23564, 17468, 7777, 2122
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0 ..0..1..1..1. .0..1..1..0. .1..1..0..0. .0..0..0..0. .0..0..0..1 ..0..0..0..1. .1..1..0..0. .1..1..1..0. .1..1..1..1. .1..1..1..1 ..0..0..0..1. .1..1..0..0. .1..1..1..0. .1..1..1..1. .1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..263
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) for n>3
k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3) for n>4
k=3: a(n) = 3*a(n-1) +a(n-2) -6*a(n-3) +5*a(n-4) -2*a(n-5) -2*a(n-6) -a(n-7) for n>9
k=4: [order 15] for n>18
k=5: [order 35] for n>40
k=6: [order 87] for n>91
Comments