cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280095 Engel expansion of phi to the base Pi.

Original entry on oeis.org

2, 105, 617, 3077, 9757, 71731, 306407, 2071853, 10770894, 185768753, 1672941615, 14465494561, 338610760068, 1260607468485, 5168248479349, 151720540392580, 1384591426590643, 30464122079618738, 121074568909128689, 574695040334652831
Offset: 0

Views

Author

G. C. Greubel, Dec 25 2016

Keywords

Comments

The Mathematica code provided calculates (1+ sqrt(5))/4 and yields the Engel expansion (1+sqrt(5))/4 = Pi/4 + Pi^2/(4*105) + O(Pi^6). Multiplying this expansion by 2 gives this sequence.

Examples

			phi = Pi/2 + Pi^2/(2*105) + Pi^3/(2*105*617) + ...
		

Crossrefs

Cf. A232325.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[Pi &, Floor[A]], First@Transpose@
    NestList[{Ceiling[Pi/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/Pi} &, {Ceiling[Pi/(A - Floor[A])], (A - Floor[A])/Pi}, n - 1]]; EngelExp[N[(1 + Sqrt[5])/4, 7!], 20]