A280106 Numbers k such that the half sum of the prime factors of Fibonacci(k) is a Fibonacci number.
3, 6, 8, 10, 14, 15, 22, 26, 30, 34, 94
Offset: 1
Examples
10 is in the sequence because Fibonacci(10) = 5*11=> 5+11 = 2*8 = 2*F(6); 94 is in the sequence because Fibonacci(94) = 2971215073*6643838879 => 2971215073+6643838879 = 2*4807526976 = 2*F(48).
Programs
-
Maple
with(numtheory):with(combinat,fibonacci):nn:=300: for n from 3 to nn do: f:=fibonacci(n):x:=factorset(f):n0:=nops(x): s:=sum(āx[i]ā, āiā=1..n0):c:=s/2: x1:=sqrt(5*c^2-4):x2:=sqrt(5*c^2+4): if x1=floor(x1) or x2=floor(x2) then print(n): else fi: od:
Comments