cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A280112 Indices of centered 10-gonal numbers (A062786) that are also triangular numbers (A000217).

Original entry on oeis.org

1, 19, 703, 26677, 1013005, 38467495, 1460751787, 55470100393, 2106403063129, 79987846298491, 3037431756279511, 115342418892322909, 4379974486151991013, 166323688054883335567, 6315920171599414760515, 239838642832722877563985, 9107552507471869932670897
Offset: 1

Views

Author

Colin Barker, Dec 26 2016

Keywords

Comments

Also positive integers y in the solutions to x^2 - 10*y^2 + x + 10*y - 2 = 0, the corresponding values of x being A280111.

Examples

			19 is in the sequence because the 19th centered 10-gonal number is 1711, which is also the 58th triangular number.
		

Crossrefs

Programs

  • Mathematica
    Table[Simplify[1/2 + (19 + 6 #)^(-n) (10 + 3 # + (10 - 3 #) (19 + 6*#)^(2 n))/40] &@ Sqrt@ 10, {n, 17}] (* or *)
    Rest@ CoefficientList[Series[x (1 - 20 x + x^2)/((1 - x) (1 - 38 x + x^2)), {x, 0, 17}], x] (* Michael De Vlieger, Dec 26 2016 *)
  • PARI
    Vec(x*(1 - 20*x + x^2) / ((1 - x)*(1 - 38*x + x^2)) + O(x^20))

Formula

a(n) = 1/2 + (19 + 6*sqrt(10))^(-n)*(10+3*sqrt(10) + (10-3*sqrt(10))*(19+6*sqrt(10))^(2*n)) / 40.
a(n) = 39*a(n-1) - 39*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 - 20*x + x^2) / ((1 - x)*(1 - 38*x + x^2)).

A280113 Triangular numbers (A000217) that are also centered 10-gonal numbers (A062786).

Original entry on oeis.org

1, 1711, 2467531, 3558178261, 5130890585101, 7398740665537651, 10668978908814707911, 15384660187770143270281, 22184669321785637781037561, 31990277777354701910112892951, 46129958370276158368745010598051, 66519367979660443013028395169496861
Offset: 1

Views

Author

Colin Barker, Dec 26 2016

Keywords

Examples

			1711 is in the sequence because the 58th triangular number is 1711, which is also the 19th centered 10-gonal number.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == 1443 a[n - 1] - 1443 a[n - 2] + a[n - 3], a[1] == 1, a[2] == 1711, a[3] == 2467531}, a, {n, 12}] (* or *)
    Rest@ CoefficientList[Series[x (1 + 268 x + x^2)/((1 - x) (1 - 1442 x + x^2)), {x, 0, 12}], x] (* Michael De Vlieger, Dec 26 2016 *)
    LinearRecurrence[{1443,-1443,1},{1,1711,2467531},20] (* Harvey P. Dale, Dec 29 2017 *)
  • PARI
    Vec(x*(1 + 268*x + x^2) / ((1 - x)*(1 - 1442*x + x^2)) + O(x^15))

Formula

a(n) = 1443*a(n-1) - 1443*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 268*x + x^2) / ((1 - x)*(1 - 1442*x + x^2)).
Showing 1-2 of 2 results.