cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A280131 Partial sums of A029940 (Product_{d|n} phi(d)).

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 20, 28, 40, 56, 66, 98, 110, 146, 210, 274, 290, 434, 452, 708, 852, 952, 974, 1998, 2078, 2222, 2438, 3302, 3330, 7426, 7456, 8480, 8880, 9136, 9712, 23536, 23572, 23896, 24472, 40856, 40896, 61632, 61674, 65674, 74890, 75374, 75420
Offset: 1

Views

Author

Jaroslav Krizek, Dec 27 2016

Keywords

Comments

phi(n) is the number of totatives of n (A000010).

Crossrefs

Cf. A000010, A029940, A232533 (partial sums of A057661), A280132 (partial products of A029940).

Programs

  • Magma
    [&+[&*[EulerPhi(d): d in Divisors(k)]: k in [1..n]]: n in [1..100]]
  • Maple
    A029940:= [seq(mul(numtheory:-phi(d),d=numtheory:-divisors(n)),n=1..100)]:
    ListTools:-PartialSums(A029940); # Robert Israel, Jan 11 2017
  • Mathematica
    Accumulate@ Array[Product[EulerPhi@ d, {d, Divisors@ #}] &, 47] (* Michael De Vlieger, Dec 27 2016 *)

Formula

a(n) = Sum_{i=1..n} A029940(i).

A280133 Partial products of A057661 (Sum_{d|n} psi(d)).

Original entry on oeis.org

1, 2, 8, 48, 528, 5808, 127776, 2811072, 87143232, 2788583424, 156160671744, 6090266198016, 481131029643264, 31273516926812160, 2314240252584099840, 199024661722232586240, 27266378655945864314880, 2508506836347019516968960, 431463175851687356918661120
Offset: 1

Views

Author

Jaroslav Krizek, Dec 27 2016

Keywords

Comments

psi(n) is the sum of the totatives of n (A023896).

Crossrefs

Cf. A000010, A057661, A232533 (partial sums of A057661), A280132 (partial products of A029940).

Programs

  • Magma
    [&*[&+[&+[h: h in [1..d] | GCD(h,d) eq 1]: d in Divisors(k)]: k in [1..n]]: n in [1..1000]]
  • Mathematica
    FoldList[Times[#1, #2] &, Array[Sum[Total@ Select[Range@ d, CoprimeQ[#, d] &], {d, Divisors@ #}] &, 19]] (* Michael De Vlieger, Dec 27 2016 *)

Formula

a(n) = Product_{i=1..n} A057661(i).
Showing 1-2 of 2 results.