A280161 T(n,k)=Number of nXk 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 0, 0, 2, 4, 2, 2, 8, 8, 2, 5, 18, 31, 18, 5, 8, 40, 94, 94, 40, 8, 15, 92, 305, 424, 305, 92, 15, 26, 208, 950, 1854, 1854, 950, 208, 26, 46, 470, 2901, 7628, 10677, 7628, 2901, 470, 46, 80, 1060, 8728, 30874, 58852, 58852, 30874, 8728, 1060, 80, 139, 2384, 26068
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..1..1. .0..0..0..0. .0..1..1..1. .0..0..1..1. .0..0..0..0 ..0..1..0..1. .0..0..0..1. .0..1..1..0. .0..0..1..1. .1..1..0..1 ..1..1..1..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .1..0..1..1 ..1..1..0..0. .1..1..1..1. .0..1..0..0. .0..1..0..0. .0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Crossrefs
Column 1 is A006367(n-1).
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5
k=2: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3) -6*a(n-4) -4*a(n-5) -a(n-6) for n>8
k=3: [order 14] for n>19
k=4: [order 30] for n>36
k=5: [order 70] for n>80
Comments