cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A280293 a(0) = 3, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [-5, 4].

Original entry on oeis.org

3, 1, 6, 7, 18, 31, 66, 127, 258, 511, 1026, 2047, 4098, 8191, 16386, 32767, 65538, 131071, 262146, 524287, 1048578, 2097151, 4194306, 8388607, 16777218, 33554431, 67108866, 134217727, 268435458, 536870911, 1073741826, 2147483647, 4294967298, 8589934591
Offset: 0

Views

Author

Paul Curtz, Dec 31 2016

Keywords

Comments

From 1, the last digit is a periodic sequence of length 4:repeat [1, 6, 7, 8].

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,1,-2},{3,1,6},50] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    Vec((3-5*x+x^2) / ((1-x)*(1+x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Dec 31 2016

Formula

a(2n) = 4^n + 2. a(2n+1) = 2*4^n - 1.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), n>2.
a(n) = 2^n + periodic sequence of length 2: repeat [2, -1].
a(n) = 2^(n+2) - A280173(n).
a(n+2) = a(n) + 3*2^n, a(0) = 3, a(1) = 1.
G.f.: (3-5*x+x^2) / ((1-x)*(1+x)*(1-2*x)). - Colin Barker, Dec 31 2016

Extensions

More terms from Colin Barker, Dec 31 2016
Showing 1-1 of 1 results.