cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280186 Number of 3-element subsets of S = {1..n} whose sum is odd.

Original entry on oeis.org

0, 0, 0, 0, 2, 4, 10, 16, 28, 40, 60, 80, 110, 140, 182, 224, 280, 336, 408, 480, 570, 660, 770, 880, 1012, 1144, 1300, 1456, 1638, 1820, 2030, 2240, 2480, 2720, 2992, 3264, 3570, 3876, 4218, 4560, 4940, 5320, 5740, 6160, 6622, 7084, 7590, 8096, 8648, 9200
Offset: 0

Views

Author

Necip Fazil Patat, Dec 28 2016

Keywords

Comments

The same as A006584 (apart from the offset). - R. J. Mathar, Jan 15 2017
There are two cases: n is odd and n is even.
Let n be an odd integer and n > 3, the sum of 3 integers is odd when all of them are odd or one is odd and the others are even. Number of ways to choose 3 odd numbers: C((n+1)/2, 3). Number of ways to choose 2 even numbers and 1 odd: C((n-1)/2, 2)*C((n+1)/2, 1). Total number of ways: C((n+1)/2, 3) + C((n-1)/2, 2)*C((n+1)/2,1).
Let n be an even integer and n > 3. Number of ways to choose 3 odd numbers: C(n/2, 3). Number of ways to choose 2 even numbers and 1 odd: C(n/2, 2)*C(n/2, 1). Total number of ways: C(n/2, 3) + C(n/2, 2)*C(n/2, 1).
Take a chessboard of n X n unit squares in which the a1 square is black. a(n) is the number of composite squares having white unit squares on their vertices. For the number of composite squares having black unit squares on their vertices see A005993. - Ivan N. Ianakiev, Aug 19 2018

Examples

			For n = 5 then a(5) = 4. The subsets are: {1, 2, 4}, {1, 3, 5}, {2, 3, 4}, {2, 4, 5}.
		

Crossrefs

Essentially 2*A006918.
Same as A006584.

Programs

  • Mathematica
    Table[Binomial[(n + #)/2, 3] + Binomial[(n - #)/2, 2] Binomial[(n + #)/2, 1] &@ Boole@ OddQ@ n, {n, 0, 49}] (* or *)
    CoefficientList[Series[2 x^4/((1 - x)^4*(1 + x)^2), {x, 0, 49}], x] (* Michael De Vlieger, Jan 07 2017 *)
  • PARI
    concat(vector(4), Vec(2*x^4 / ((1-x)^4*(1+x)^2) + O(x^60))) \\ Colin Barker, Dec 28 2016

Formula

a(n) = C((n+1)/2, 3) + C((n-1)/2, 2)*C((n+1)/2,1) when n is odd.
a(n) = C(n/2, 3) + C(n/2, 2)*C(n/2, 1) when n is even.
From Colin Barker, Dec 28 2016: (Start)
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>5.
a(n) = n*(n - 1)*(n - 2)/12 for n even.
a(n) = (n - 1)*(n + 1)*(n - 3)/12 for n odd.
G.f.: 2*x^4 / ((1-x)^4*(1+x)^2). (End)
a(n) = ((-1)^n)*(-1+n)*(3 - 3*(-1)^n - 4*((-1)^n)*n + 2*((-1)^n)*n^2)/24. - Ivan N. Ianakiev, Aug 19 2018

Extensions

More terms from Colin Barker, Dec 28 2016