A280197 Expansion of 1/(1 - Sum_{k>=2} mu(k)^2*x^k), where mu(k) is the Moebius function (A008683).
1, 0, 1, 1, 1, 3, 3, 6, 8, 12, 20, 28, 45, 68, 102, 159, 238, 367, 557, 849, 1298, 1973, 3015, 4592, 7002, 10679, 16276, 24822, 37841, 57696, 87971, 134119, 204497, 311783, 475370, 724786, 1105053, 1684853, 2568837, 3916642, 5971587, 9104711, 13881698, 21165024, 32269721, 49200718, 75014949, 114373158, 174381511
Offset: 0
Keywords
Examples
a(5) = 3 because we have [5], [3, 2] and [2, 3].
Links
- Robert Israel, Table of n, a(n) for n = 0..5456
- Eric Weisstein's World of Mathematics, Squarefree
- Index entries for sequences related to compositions
Programs
-
Maple
N:= 100: # for a(0)..a(N) g:= 1/(1-add(numtheory:-mobius(k)^2*x^k, k=2..N)): S:= series(g,x,N+1): seq(coeff(S,x,j),j=0..N); # Robert Israel, Dec 29 2016
-
Mathematica
nmax = 48; CoefficientList[Series[1/(1 - Sum[MoebiusMu[k]^2 x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=2} mu(k)^2*x^k).
Comments