cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280197 Expansion of 1/(1 - Sum_{k>=2} mu(k)^2*x^k), where mu(k) is the Moebius function (A008683).

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 3, 6, 8, 12, 20, 28, 45, 68, 102, 159, 238, 367, 557, 849, 1298, 1973, 3015, 4592, 7002, 10679, 16276, 24822, 37841, 57696, 87971, 134119, 204497, 311783, 475370, 724786, 1105053, 1684853, 2568837, 3916642, 5971587, 9104711, 13881698, 21165024, 32269721, 49200718, 75014949, 114373158, 174381511
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2016

Keywords

Comments

Number of compositions (ordered partitions) into squarefree parts > 1 (A144338).

Examples

			a(5) = 3 because we have [5], [3, 2] and [2, 3].
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    g:= 1/(1-add(numtheory:-mobius(k)^2*x^k, k=2..N)):
    S:= series(g,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Dec 29 2016
  • Mathematica
    nmax = 48; CoefficientList[Series[1/(1 - Sum[MoebiusMu[k]^2 x^k, {k, 2, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=2} mu(k)^2*x^k).