A280198 Expansion of 1/(1 - Sum_{k>=1} mu(2*k-1)^2*x^(2*k-1)), where mu() is the Moebius function (A008683).
1, 1, 1, 2, 3, 5, 8, 13, 21, 33, 53, 86, 138, 222, 357, 574, 923, 1484, 2387, 3839, 6173, 9927, 15964, 25672, 41284, 66389, 106762, 171686, 276091, 443989, 713988, 1148179, 1846411, 2969252, 4774918, 7678647, 12348195, 19857396, 31933099, 51352294, 82580715, 132799801, 213558181, 343427445, 552272966, 888121883, 1428207656
Offset: 0
Keywords
Examples
a(4) = 3 because we have [3, 1], [1, 3] and [1, 1, 1, 1].
Links
- Eric Weisstein's World of Mathematics, Squarefree
- Index entries for sequences related to compositions
Programs
-
Mathematica
nmax = 46; CoefficientList[Series[1/(1 - Sum[MoebiusMu[2 k - 1]^2 x^(2 k - 1), {k, 1, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=1} mu(2*k-1)^2*x^(2*k-1)).
Comments