A280210 Expansion of (Sum_{k>=1} mu(k)^2*x^k)^3, where mu(k) is the Moebius function (A008683).
0, 0, 0, 1, 3, 6, 7, 9, 12, 19, 21, 21, 21, 30, 36, 37, 36, 48, 58, 63, 57, 70, 78, 87, 78, 96, 105, 114, 105, 123, 133, 138, 126, 148, 162, 174, 156, 195, 207, 220, 192, 234, 250, 261, 237, 280, 312, 318, 282, 330, 363, 370, 315, 375, 405, 432, 366, 421, 453, 483, 417, 468, 507, 532, 474, 537, 568, 591, 519, 601, 630, 666, 570
Offset: 0
Keywords
Examples
a(4) = 3 because we have [2, 1, 1], [1, 2, 1] and [1, 1, 2].
Links
- Eric Weisstein's World of Mathematics, Squarefree
Programs
-
Mathematica
nmax = 72; CoefficientList[Series[(Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}])^3, {x, 0, nmax}], x]
Formula
G.f.: (Sum_{k>=1} mu(k)^2*x^k)^3.
Comments