A280238 Expansion of 1/(1 - Sum_{k>=2} floor(bigomega(k)/2)*floor(2/bigomega(k))*x^k), where bigomega(k) is the number of prime divisors of k counted with multiplicity (A001222).
1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 3, 0, 2, 2, 6, 3, 6, 3, 11, 10, 16, 10, 23, 23, 40, 34, 52, 52, 93, 94, 130, 133, 209, 234, 330, 352, 488, 570, 804, 909, 1198, 1405, 1918, 2283, 2980, 3512, 4622, 5636, 7340, 8811, 11321, 13864, 17937, 21957, 27936, 34262, 43857, 54290, 68915, 84940, 107685, 133811, 169615, 210375, 265305
Offset: 0
Keywords
Examples
a(10) = 3 because we have [4, 6], [6, 4] and [10].
Links
- Eric Weisstein's World of Mathematics, Semiprime
- Index entries for sequences related to compositions
Programs
-
Mathematica
nmax = 44; CoefficientList[Series[1/(1 - Sum[Floor[PrimeOmega[k]/2] Floor[2/PrimeOmega[k]] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=2} floor(bigomega(k)/2)*floor(2/bigomega(k))*x^k).
Comments