cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280262 Numbers n such that A187730(n) < A049559(n).

Original entry on oeis.org

21, 33, 57, 65, 69, 77, 91, 93, 105, 129, 133, 141, 145, 161, 177, 185, 189, 201, 209, 213, 217, 225, 237, 249, 253, 265, 273, 297, 301, 305, 309, 321, 329, 341, 345, 369, 377, 381, 385, 393, 413, 417, 437, 441, 451, 453, 465, 469, 473, 481, 489, 497, 501, 505, 513, 517, 537, 545, 553, 559, 573
Offset: 1

Views

Author

Thomas Ordowski and Robert Israel, Dec 30 2016

Keywords

Comments

Terms are not of the form p^k, where p is a prime.
There are no terms of the form 2p+1, where p is a prime.
The sequence contains all Carmichael numbers except A264012.
If n is in the sequence, then n-1 is not squarefree. - Thomas Ordowski, Jan 02 2017
Theorem: the set of such numbers has natural density 0. Proof: Let y = y(n) = loglog n /logloglog n. Using part 1 of Lemma 2.1 in paper 199 on my home page (joint with Luca), applied to the residue class 1: But for a set of n of density 0, for each integer d < y, there is a prime p|n with p == 1 (mod d). In particular, lambda(n) is divisible by every integer d up to y. Suppose now that gcd(lambda(n),n-1) < gcd(phi(n),n-1). Then there is a prime power q^a such that q^a | phi(n), q^a | n-1, and q^a does not divide lambda(n). Then, but for a set of n of density 0, we would have q^a > y. Since q | lambda(n), we have a at least 2. So, n-1 is divisible by some q^a > y with a >= 2. The set of such n has density 0. QED. - Carl Pomerance, Jan 02 2017
Number of terms < 10^k: 0, 8, 112, 1258, 13069, 132262, 1324263, 13229372, 132009236, ..., . Robert G. Wilson v, Jan 04 2017
If p and q are distinct primes == 3 (mod 4), then p*q is in the sequence. - Thomas Ordowski, Mar 30 2017

Crossrefs

Subsequence of A033949.

Programs

  • Maple
    select(t -> igcd(numtheory:-lambda(t),t-1) < igcd(numtheory:-phi(t),t-1), [$1..1000]);
  • Mathematica
    Select[Range@ 600, GCD[CarmichaelLambda@ #, # - 1] < GCD[# - 1, EulerPhi@ #] &] (* Michael De Vlieger, Dec 31 2016 *)