A280275 Number of set partitions of [n] where sizes of distinct blocks are coprime.
1, 1, 2, 5, 12, 37, 118, 387, 1312, 4445, 17034, 73339, 342532, 1616721, 7299100, 31195418, 129179184, 578924785, 3057167242, 18723356715, 120613872016, 738703713245, 4080301444740, 20353638923275, 95273007634552, 443132388701107, 2149933834972928
Offset: 0
Keywords
Examples
a(n) = A000110(n) for n<=3. a(4) = 12: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. a(5) = 37: 12345, 1234|5, 1235|4, 123|45, 123|4|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 125|3|4, 12|3|4|5, 1345|2, 134|25, 134|2|5, 135|24, 13|245, 135|2|4, 13|2|4|5, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 1|23|4|5, 145|2|3, 14|2|3|5, 1|245|3, 1|24|3|5, 1|2|345, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- Wikipedia, Coprime integers
- Wikipedia, Partition of a set
Programs
-
Maple
with(numtheory): b:= proc(n, i, s) option remember; `if`(n=0 or i=1, 1, b(n, i-1, select(x->x<=i-1, s))+ `if`(i>n or factorset(i) intersect s<>{}, 0, b(n-i, i-1, select(x->x<=i-1, s union factorset(i)))*binomial(n, i))) end: a:= n-> b(n$2, {}): seq(a(n), n=0..30);
-
Mathematica
b[n_, i_, s_] := b[n, i, s] = Expand[If[n==0 || i==1, x^n, b[n, i-1, Select[s, # <= i-1&]] + If[i>n || FactorInteger[i][[All, 1]] ~Intersection~ s != {}, 0, x*b[n-i, i-1, Select[s ~Union~ FactorInteger[i][[All, 1]], # <= i-1&]]*Binomial[n, i]]]]; a[n_] := b[n, n, {}] // CoefficientList[#, x]& // Total; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)
Formula
a(n) = Sum_{k=0..n} A280880(n,k).