cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280275 Number of set partitions of [n] where sizes of distinct blocks are coprime.

Original entry on oeis.org

1, 1, 2, 5, 12, 37, 118, 387, 1312, 4445, 17034, 73339, 342532, 1616721, 7299100, 31195418, 129179184, 578924785, 3057167242, 18723356715, 120613872016, 738703713245, 4080301444740, 20353638923275, 95273007634552, 443132388701107, 2149933834972928
Offset: 0

Views

Author

Alois P. Heinz, Dec 30 2016

Keywords

Examples

			a(n) = A000110(n) for n<=3.
a(4) = 12: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
a(5) = 37: 12345, 1234|5, 1235|4, 123|45, 123|4|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 125|3|4, 12|3|4|5, 1345|2, 134|25, 134|2|5, 135|24, 13|245, 135|2|4, 13|2|4|5, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 1|23|4|5, 145|2|3, 14|2|3|5, 1|245|3, 1|24|3|5, 1|2|345, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
		

Crossrefs

Row sums of A280880.

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, s) option remember;
          `if`(n=0 or i=1, 1, b(n, i-1, select(x->x<=i-1, s))+
          `if`(i>n or factorset(i) intersect s<>{}, 0, b(n-i, i-1,
          select(x->x<=i-1, s union factorset(i)))*binomial(n, i)))
        end:
    a:= n-> b(n$2, {}):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = Expand[If[n==0 || i==1, x^n, b[n, i-1, Select[s, # <= i-1&]] + If[i>n || FactorInteger[i][[All, 1]] ~Intersection~ s != {}, 0, x*b[n-i, i-1, Select[s ~Union~ FactorInteger[i][[All, 1]], # <= i-1&]]*Binomial[n, i]]]];
    a[n_] := b[n, n, {}] // CoefficientList[#, x]& // Total;
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)

Formula

a(n) = Sum_{k=0..n} A280880(n,k).