cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A280276 G.f.: Product_{k>=1} (1 + x^k) / (1 - x^(k^2)).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 17, 24, 33, 46, 62, 82, 108, 141, 182, 233, 297, 375, 472, 590, 733, 907, 1117, 1369, 1671, 2034, 2465, 2978, 3586, 4304, 5152, 6149, 7319, 8689, 10293, 12162, 14340, 16871, 19806, 23207, 27139, 31678, 36909, 42932, 49851, 57794, 66897
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 30 2016

Keywords

Comments

Convolution of A000009 and A001156.

Crossrefs

Programs

  • Mathematica
    nmax=80; CoefficientList[Series[Product[(1+x^k)/(1-x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3) + 3^(1/4) * Zeta(3/2) * n^(1/4) / sqrt(2) - 3*Zeta(3/2)^2 / (16*Pi)) / (8*sqrt(6*Pi)*n).

A369571 Expansion of Product_{k>=1} (1 + x^(k^3)) * (1 + x^k).

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 20, 25, 31, 38, 47, 58, 70, 84, 102, 122, 145, 173, 205, 242, 285, 334, 391, 458, 534, 620, 720, 833, 961, 1109, 1276, 1466, 1683, 1926, 2201, 2513, 2863, 3258, 3704, 4203, 4763, 5394, 6098, 6885, 7768, 8752, 9850, 11076, 12439
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 26 2024

Keywords

Comments

Convolution of A279329 and A000009.
a(n) is the number of pairs (Q(k), P(n-k)), 0<=k<=n, where Q(k) is a partition of k into distinct cubes and P(n-k) is a partition of n-k into distinct parts.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+x^(k^3))*(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3) + (2^(1/3) - 1) * Gamma(1/3) * zeta(4/3) * n^(1/6) / (3^(5/6) * Pi^(1/3))) / (2^(5/2) * 3^(1/4) * n^(3/4)).

A369573 Expansion of Product_{k>=1} (1 + x^(k^2)) / (1 - x^(k^3)).

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9, 11, 12, 12, 14, 17, 18, 18, 20, 23, 24, 24, 26, 31, 34, 35, 38, 43, 46, 47, 50, 55, 59, 61, 66, 73, 77, 79, 84, 92, 97, 100, 106, 115, 121, 124, 130, 140, 148, 152, 161, 174, 183, 188, 197, 210, 220, 226, 235, 251, 264, 272
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 26 2024

Keywords

Comments

Convolution of A033461 and A003108.
a(n) is the number of pairs (Q(k), P(n-k)), 0<=k<=n, where Q(k) is a partition of k into distinct squares and P(n-k) is a partition of n-k into cubes.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+x^(k^2))/(1-x^(k^3)), {k, 1, nmax^(1/2)}], {x, 0, nmax}], x]
Showing 1-3 of 3 results.