cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369570 Expansion of Product_{k>=1} (1 + x^(k^2)) * (1 + x^k).

Original entry on oeis.org

1, 2, 2, 3, 5, 7, 9, 12, 15, 20, 27, 33, 41, 52, 65, 80, 99, 120, 145, 177, 213, 255, 305, 363, 430, 511, 604, 709, 833, 976, 1141, 1331, 1547, 1793, 2079, 2406, 2775, 3197, 3676, 4221, 4841, 5541, 6330, 7225, 8235, 9372, 10655, 12094, 13710, 15529, 17568, 19848
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 26 2024

Keywords

Comments

Convolution of A033461 and A000009.
a(n) is the number of pairs (Q(k), P(n-k)), 0<=k<=n, where Q(k) is a partition of k into distinct squares and P(n-k) is a partition of n-k into distinct parts.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+x^(k^2))*(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3) + 3^(1/4) * (sqrt(2) - 1) * zeta(3/2) * n^(1/4)/2 - 3*(3 - 2*sqrt(2)) * zeta(3/2)^2/(32*Pi)) / (2^(5/2) * 3^(1/4) * n^(3/4)).

A280277 G.f.: Product_{k>=1} (1 + x^k) / (1 - x^(k^3)).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 14, 19, 26, 35, 46, 60, 77, 98, 124, 156, 195, 242, 299, 367, 448, 545, 660, 796, 957, 1146, 1368, 1629, 1933, 2287, 2700, 3178, 3732, 4373, 5112, 5964, 6944, 8068, 9357, 10832, 12517, 14440, 16632, 19126, 21960, 25178, 28825, 32954, 37625
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 30 2016

Keywords

Comments

Convolution of A000009 and A003108.

Crossrefs

Programs

  • Mathematica
    nmax=80; CoefficientList[Series[Product[(1+x^k)/(1-x^(k^3)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3) + 2^(1/3) * Gamma(1/3) * Zeta(4/3) * n^(1/6) / (3^(5/6) * Pi^(1/3))) / (16*sqrt(3)*Pi*n).

A280422 G.f.: Product_{k>=1} (1 + x^k) / (1 - x^(k*(k+1)/2)).

Original entry on oeis.org

1, 2, 3, 6, 9, 13, 21, 30, 41, 59, 81, 108, 147, 195, 253, 333, 431, 549, 704, 892, 1119, 1409, 1758, 2176, 2697, 3321, 4065, 4976, 6061, 7345, 8898, 10737, 12901, 15489, 18535, 22103, 26333, 31284, 37056, 43844, 51751, 60931, 71655, 84090, 98464, 115162
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2017

Keywords

Comments

Convolution of A007294 and A000009.

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1+x^k)/(1-x^(k*(k+1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(sqrt(n/3)*Pi + 3^(1/4) * Zeta(3/2) * n^(1/4) - 3*Zeta(3/2)^2/(8*Pi)) / (32 * 3^(3/4) * n^(5/4)).

A369574 Expansion of Product_{k>=1} (1 + x^(k^3)) / (1 - x^(k^2)).

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 4, 4, 6, 9, 10, 10, 12, 15, 16, 16, 19, 24, 27, 28, 31, 36, 39, 40, 44, 52, 58, 62, 68, 76, 82, 86, 93, 104, 114, 122, 134, 148, 158, 166, 179, 196, 210, 223, 242, 265, 282, 295, 315, 342, 365, 384, 412, 447, 476, 498, 527, 566, 602, 632, 670
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 26 2024

Keywords

Comments

Convolution of A279329 and A001156.
a(n) is the number of pairs (Q(k), P(n-k)), 0<=k<=n, where Q(k) is a partition of k into distinct cubes and P(n-k) is a partition of n-k into squares.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+x^(k^3))/(1-x^(k^2)), {k, 1, nmax^(1/2)}], {x, 0, nmax}], x]

Formula

a(n) ~ exp((27*zeta(3/2)^(8/9) * (729*(48 + 6*2^(1/3) - 35*2^(2/3)) * Pi^(4/3) * zeta(3/2)^(16/9) * n^(1/3) + 972 * 2^(1/9)*(41 - 59*2^(1/3) + 21*2^(2/3)) * Gamma(4/3) * zeta(4/3) * (Pi*zeta(3/2))^(8/9) * n^(2/9) - 8*2^(2/9)*(-160 + 2^(1/3) + 100*2^(2/3)) * Pi^(4/9) * Gamma(1/3)^2 * zeta(4/3)^2 * n^(1/9)) + 32*(-161 - 99*2^(1/3) + 180*2^(2/3)) * Gamma(1/3)^3 * zeta(4/3)^3) / (26244*(-1 + 2^(1/3))^6 * Pi * zeta(3/2)^2)) * zeta(3/2)^(2/3) * (-198 + 360*2^(1/3) - 161*2^(2/3)) / (8*sqrt(6) * (-1 + 2^(1/3))^9 * Pi^(7/6) * n^(7/6)).
Showing 1-4 of 4 results.