A280286 a(n) is the least k such that sopfr(k) - sopf(k) = n.
4, 9, 8, 25, 16, 49, 32, 81, 64, 121, 128, 169, 256, 625, 512, 289, 1024, 361, 2048, 1444, 1331, 529, 5324, 2116, 2197, 4232, 8788, 841, 17576, 961, 7569, 3844, 4913, 7688, 19652, 1369, 6859, 5476, 12321, 1681, 34225, 1849, 15129, 7396, 12167, 2209, 46225, 8836, 19881
Offset: 2
Keywords
Links
- Michel Marcus, Table of n, a(n) for n = 2..500
Programs
-
Mathematica
prifacs[n_]:=If[n==1,{},Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]]; q=Table[Total[prifacs[n]]-Total[Union[prifacs[n]]],{n,1000}]; mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; Table[Position[q,k][[1,1]],{k,2,mnrm[q/.(0->1)]}] (* Gus Wiseman, Feb 20 2025 *)
-
PARI
sopfr(n) = my(f=factor(n)); sum(j=1, #f~, f[j,1]*f[j,2]); sopf(n) = my(f=factor(n)); sum(j=1, #f~, f[j,1]); a(n) = {my(k = 2); while (sopfr(k) - sopf(k) != n, k++); k;}
Formula
For p prime, a(p) = p^2 (see A001248).