A280290 Numbers n such that number of partitions of n is even and number of partitions of n into distinct parts is even.
8, 9, 10, 11, 19, 21, 25, 27, 28, 30, 31, 34, 42, 45, 46, 47, 50, 55, 58, 59, 62, 64, 65, 66, 74, 75, 78, 79, 80, 84, 86, 94, 96, 97, 98, 101, 103, 106, 108, 109, 110, 112, 113, 116, 120, 122, 124, 125, 128, 129, 130, 131, 133, 135, 136, 137, 141, 142, 147, 149, 151, 153, 154, 158, 160, 163, 167, 170, 171, 174, 175, 179, 180
Offset: 1
Examples
8 is in the sequence because we have: ----------------------------------- number of partitions = 22 (is even) ----------------------------------- 8 = 8 7 + 1 = 8 6 + 2 = 8 6 + 1 + 1 = 8 5 + 3 = 8 5 + 2 + 1 = 8 5 + 1 + 1 + 1 = 8 4 + 4 = 8 4 + 3 + 1 = 8 4 + 2 + 2 = 8 4 + 2 + 1 + 1 = 8 4 + 1 + 1 + 1 + 1 = 8 3 + 3 + 2 = 8 3 + 3 + 1 + 1 = 8 3 + 2 + 2 + 1 = 8 3 + 2 + 1 + 1 + 1 = 8 3 + 1 + 1 + 1 + 1 + 1 = 8 2 + 2 + 2 + 2 = 8 2 + 2 + 2 + 1 + 1 = 8 2 + 2 + 1 + 1 + 1 + 1 = 8 2 + 1 + 1 + 1 + 1 + 1 + 1 = 8 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8 ------------------------------------------------------- number of partitions into distinct parts = 6 (is even) ------------------------------------------------------- 8 = 8 7 + 1 = 8 6 + 2 = 8 5 + 3 = 8 5 + 2 + 1 = 8 4 + 3 + 1 = 8
Links
- Eric Weisstein's World of Mathematics, Partition Function P, Partition Function Q
- Index entries for related partition-counting sequences
Programs
-
Mathematica
Select[Range[180], Mod[PartitionsP[#1], 2] == Mod[PartitionsQ[#1], 2] == 0 & ]
Comments