cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A280298 Numbers with 67 divisors.

Original entry on oeis.org

73786976294838206464, 30903154382632612361920641803529, 13552527156068805425093160010874271392822265625, 59768263894155949306790119265585619217025149412430681649, 539407797827634189900210968137750826278309533633974732577186113975161
Offset: 1

Views

Author

Omar E. Pol, Dec 31 2016

Keywords

Comments

Also, 66th powers of primes.
More generally, the n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. In this case, p = 67.

Examples

			a(1) = 2^66, a(2) = 3^66, a(3) = 5^66, a(4) = 7^66, a(5) = 11^66.
		

Crossrefs

Programs

  • Mathematica
    Array[Prime[#]^66 &, {5}] (* Michael De Vlieger, Dec 31 2016 *)
  • PARI
    a(n)=prime(n)^66

Formula

a(n) = A000040(n)^(67-1) = A000040(n)^66.
A000005(a(n)) = 67.

A280299 Numbers with 71 divisors.

Original entry on oeis.org

1180591620717411303424, 2503155504993241601315571986085849, 8470329472543003390683225006796419620513916015625, 143503601609868434285603076356671071740077383739246066639249, 7897469567994392174328988784504809847540729881935024059662581894710332201
Offset: 1

Views

Author

Omar E. Pol, Dec 31 2016

Keywords

Comments

Also, 70th powers of primes.
More generally, the n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. In this case, p = 71.

Examples

			a(1) = 2^70, a(2) = 3^70, a(3) = 5^70, a(4) = 7^70, a(5) = 11^70.
		

Crossrefs

Programs

  • Mathematica
    Array[Prime[#]^70 &, {5}] (* Michael De Vlieger, Dec 31 2016 *)
  • PARI
    a(n)=prime(n)^70

Formula

a(n) = A000040(n)^(71-1) = A000040(n)^70.
A000005(a(n)) = 71.

A280346 Numbers with 79 divisors.

Original entry on oeis.org

302231454903657293676544, 16423203268260658146231467800709255289, 3308722450212110699485634768279851414263248443603515625, 827269706064171159838078900184013751038269841857389464208009274449, 1692892739326831320764318961708001178036611459414853872137348292520966629744627081
Offset: 1

Views

Author

Omar E. Pol, Jan 01 2017

Keywords

Comments

Also, 78th powers of primes.
More generally, the n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. In this case, p = 79.

Examples

			a(1) = 2^78, a(2) = 3^78, a(3) = 5^78, a(4) = 7^78, a(5) = 11^78.
		

Crossrefs

Programs

  • Mathematica
    With[{p = 22}, Table[Prime[n]^(Prime@ p - 1), {n, 5}]] (* Michael De Vlieger, Jan 01 2017 *)
  • PARI
    a(n)=prime(n)^78

Formula

a(n) = A000040(n)^(79-1) = A000040(n)^78.
A000005(a(n)) = 79.

A280347 Numbers with 83 divisors.

Original entry on oeis.org

4835703278458516698824704, 1330279464729113309844748891857449678409, 2067951531382569187178521730174907133914530277252197265625, 1986274564260074954771227439341817016242885890299592103563430267952049, 24785642596484137367310393918366845247634028377292875541962916350799472426091085092921
Offset: 1

Views

Author

Omar E. Pol, Jan 01 2017

Keywords

Comments

Also, 82nd powers of primes.
More generally, the n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. In this case, p = 83.

Examples

			a(1) = 2^82, a(2) = 3^82, a(3) = 5^82, a(4) = 7^82, a(5) = 11^82.
		

Crossrefs

Programs

  • Mathematica
    With[{p = 23}, Table[Prime[n]^(Prime@ p - 1), {n, 5}]] (* Michael De Vlieger, Jan 01 2017 *)
  • PARI
    a(n)=prime(n)^82

Formula

a(n) = A000040(n)^(83-1) = A000040(n)^82.
A000005(a(n)) = 83.

A280349 Numbers with 89 divisors.

Original entry on oeis.org

309485009821345068724781056, 969773729787523602876821942164080815560161, 32311742677852643549664402033982923967414535582065582275390625, 233683216210633558353880137011125430143959282107856711392134007594290612801, 43909277783870034878569768760415886733743786946105343887995366053338664170638348798300219681
Offset: 1

Views

Author

Omar E. Pol, Jan 01 2017

Keywords

Comments

Also, 88th powers of primes.
More generally, the n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. In this case, p = 89.

Examples

			a(1) = 2^88, a(2) = 3^88, a(3) = 5^88, a(4) = 7^88, a(5) = 11^88.
		

Crossrefs

Programs

  • Mathematica
    With[{p = 24}, Table[Prime[n]^(Prime@ p - 1), {n, 5}]] (* Michael De Vlieger, Jan 01 2017 *)
  • PARI
    a(n)=prime(n)^88

Formula

a(n) = A000040(n)^(89-1) = A000040(n)^88.
A000005(a(n)) = 89.

A280350 Numbers with 97 divisors.

Original entry on oeis.org

79228162514264337593543950336, 6362685441135942358474828762538534230890216321, 12621774483536188886587657044524579674771302961744368076324462890625, 1347137238494276547832006567721872890819326613454654477690085519113574118965817601, 9412343651268540526001186511911506574868063110469548823950876000379062365652829504091329792873336961
Offset: 1

Views

Author

Omar E. Pol, Jan 02 2017

Keywords

Comments

Also, 96th powers of primes.
More generally, the n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. In this case, p = 97.

Examples

			a(1) = 2^96, a(2) = 3^96, a(3) = 5^96, a(4) = 7^96, a(5) = 11^96.
		

Crossrefs

Programs

  • Magma
    [NthPrime(n)^96: n in [1..5]]; // Vincenzo Librandi, Jan 06 2017
  • Mathematica
    With[{p = 25}, Table[Prime[n]^(Prime[p] - 1), {n, 5}]] (* Michael De Vlieger, Jan 02 2017 *)
  • PARI
    a(n)=prime(n)^96
    

Formula

a(n) = A000040(n)^(97-1) = A000040(n)^96.
A000005(a(n)) = 97.
Showing 1-6 of 6 results.