cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280321 Number of 2 X 2 matrices with all elements in {0,..,n} having determinant = n*permanent.

Original entry on oeis.org

1, 12, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025, 9409, 9801, 10201
Offset: 0

Views

Author

Indranil Ghosh, Jan 01 2017

Keywords

Comments

Same as A016754, except for n=1. Here a(1)=12 but A016754(1)=9.

Crossrefs

Cf. A016754.

Programs

  • Python
    def t(n):
        s=0
        for a in range(n+1):
            for b in range(n+1):
                for c in range(n+1):
                    for d in range(n+1):
                        if (a*d-b*c)==n*(a*d+b*c):
                            s+=1
        return s
    for i in range(41):
        print(str(i)+" "+str(t(i)))

Formula

a(n+1) = (((n-2)*a(n))/(n-1)) + ((12*(n)^2-12*(n)+1)/(n-1)) for n>=1.
Conjectures from Colin Barker, Jan 01 2017: (Start)
a(n) = (1 + 2*n)^2 = A273789(n) = A273743(n) for n>1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
G.f.: (1 + 9*x - 8*x^2 + 9*x^3 - 3*x^4) / (1 - x)^3.
(End)