A280344 Number of 2 X 2 matrices with all elements in {0,...,n} with determinant = permanent^n.
0, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372, 8742, 9120, 9506, 9900, 10302
Offset: 0
Keywords
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..995
Programs
-
Mathematica
Table[Boole[n != 0] 2 # (2 # - 1) &[n + 1], {n, 0, 50}] (* or *) CoefficientList[Series[2 x (6 - 3 x + x^2)/(1 - x)^3, {x, 0, 50}], x] (* Michael De Vlieger, Jan 01 2017 *)
-
Python
def t(n): s=0 for a in range(0,n+1): for b in range(0,n+1): for c in range(0,n+1): for d in range(0,n+1): if (a*d-b*c)==(a*d+b*c)**n: s+=1 return s for i in range(0,41): print(i, t(i))
Formula
a(n) = (((n-2)*a(n-1))/(n-4)) - (6*(3*(n-1)+1)/(n-4)) for n>=4.
Conjectures from Colin Barker, Jan 01 2017: (Start)
a(n) = 2 + 6*n + 4*n^2 for n>0.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: 2*x*(6 - 3*x + x^2) / (1 - x)^3.
(End)
From Torlach Rush, Jul 11 2019: (Start)
a(n) = (2*n+1)*(2*n+2), n>0.
a(n) = 2*((n+1)^2 + ((n+1)*n)), n>0.
(End)
Comments