cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280344 Number of 2 X 2 matrices with all elements in {0,...,n} with determinant = permanent^n.

Original entry on oeis.org

0, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372, 8742, 9120, 9506, 9900, 10302
Offset: 0

Views

Author

Indranil Ghosh, Jan 01 2017

Keywords

Comments

For n>0, a(n) is the perimeter of a primitive Pythagorean triangle. - Torlach Rush, Jul 11 2019

Crossrefs

Same as both A002939 and A118239 without A002939(1) = 2.

Programs

  • Mathematica
    Table[Boole[n != 0] 2 # (2 # - 1) &[n + 1], {n, 0, 50}] (* or *)
    CoefficientList[Series[2 x (6 - 3 x + x^2)/(1 - x)^3, {x, 0, 50}], x] (* Michael De Vlieger, Jan 01 2017 *)
  • Python
    def t(n):
        s=0
        for a in range(0,n+1):
            for b in range(0,n+1):
                for c in range(0,n+1):
                    for d in range(0,n+1):
                        if (a*d-b*c)==(a*d+b*c)**n:
                            s+=1
        return s
    for i in range(0,41):
        print(i, t(i))

Formula

a(0) = A002939(0) = 0; a(n) = A002939(n+1), for n>=1.
a(n) = (((n-2)*a(n-1))/(n-4)) - (6*(3*(n-1)+1)/(n-4)) for n>=4.
Conjectures from Colin Barker, Jan 01 2017: (Start)
a(n) = 2 + 6*n + 4*n^2 for n>0.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: 2*x*(6 - 3*x + x^2) / (1 - x)^3.
(End)
From Torlach Rush, Jul 11 2019: (Start)
a(n) = (2*n+1)*(2*n+2), n>0.
a(n) = 2*((n+1)^2 + ((n+1)*n)), n>0.
(End)