A280384 Expansion of f(x)^3 * f(-x^2) * chi(x^3)^3 in powers of x where chi(), f() are Ramanujan theta functions.
1, 3, -1, -5, 8, -1, -28, 11, 10, -41, 41, 26, -53, 84, 21, -101, 76, 3, -129, 99, 14, -190, 187, 59, -299, 263, 62, -336, 340, 27, -459, 370, 111, -645, 518, 228, -774, 806, 179, -973, 882, 147, -1233, 955, 291, -1565, 1325, 395, -1883, 1767, 338, -2318, 1994
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x - x^2 - 5*x^3 + 8*x^4 - x^5 - 28*x^6 + 11*x^7 + 10*x^8 + ... G.f. = q^-1 + 3*q^5 - q^11 - 5*q^17 + 8*q^23 - q^29 - 28*q^35 + 11*q^41 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Amanda Clemm, Modular Forms and Weierstrass Mock Modular Forms, Mathematics, volume 4, issue 1, (2016)
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^3 QPochhammer[ x^2] QPochhammer[ -x^3, x^6]^3, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^6 + A)^6 / (eta(x + A)^3 * eta(x^3 + A)^3 * eta(x^4 + A)^3 * eta(x^12 + A)^3), n))};
Formula
Expansion of q * eta(q^12)^10 * eta(q^36)^6 / (eta(q^6)^3 * eta(q^18)^3 * eta(q^24)^3 * eta(q^72)^3) in powers of q^6.
Euler transform of period 12 sequence [3, -7, 6, -4, 3, -10, 3, -4, 6, -7, 3, -4, ...].
a(n) = (-1)^n * A280328(n).
Comments