cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280429 Longest word T from a string S using no breakpoint-reuse.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 17, 21, 25, 51, 59, 67, 141, 157, 173, 367, 399, 431, 913, 977, 1041, 2195, 2323, 2451, 5141, 5397, 5653, 11799, 12311, 12823, 26649, 27673, 28697, 59419, 61467, 63515, 131101, 135197, 139293, 286751, 294943, 303135, 622625, 639009, 655393
Offset: 1

Views

Author

Nicole Anderson, Jan 02 2017

Keywords

Comments

We start with a string, of length n, that is the identity permutation of alphabet letters. The space between two adjacent letters is called a breakpoint. We then apply duplications, which take a substring and inserts it into another part of the string. Each duplication uses three breakpoints; two for the substring and one for its destination. The destination cannot be within the substring to be duplicated. Each breakpoint can only be used once. These duplications produce a word T. The formula for the longest possible T uses the length of each string (n) and the most duplications that can occur (k).

Examples

			In this case, S is a string with length 7. There are 6 breakpoints so 2 duplications can be made. The longest possible T has length 17 which can be obtained using the process below.
ABCDEFG
A|BCDE|F|G -> ABCDEFBCDEG
AB|CDEFBC|D|EG -> ABCDEFBCDCDEFBCEG
		

References

  • N. I. Anderson, M. J. Paukner, M. R. Riehl, and A. M. Steinman, String Duplication Histories with No-Breakpoint-Reuse, preprint.

Programs

  • Mathematica
    Table[2^#*(n - 5) + 2 # + 5 &[Floor[(n - 1)/3]], {n, 45}] (* Michael De Vlieger, Feb 17 2017 *)

Formula

a(n) = (2^k)*(n-5) + 2*k + 5 with k = floor((n-1)/3).
From Chai Wah Wu, Jul 24 2020: (Start)
a(n) = a(n-1) + 5*a(n-3) - 5*a(n-4) - 8*a(n-6) + 8*a(n-7) + 4*a(n-9) - 4*a(n-10) for n > 10.
G.f.: x*(-2*x^9 + 2*x^8 + 2*x^7 + 6*x^6 - 3*x^5 - 3*x^4 - 3*x^3 + x^2 + x + 1)/((x - 1)^2*(2*x^3 - 1)^2*(x^2 + x + 1)). (End)

Extensions

More terms from Michael De Vlieger, Feb 17 2017
Offset corrected by Chai Wah Wu, Jul 24 2020