A284968 Least hairpin family matchings with n edges that are both L&P and C&C whose leftmost edge is part of a hairpin.
0, 1, 5, 18, 59, 190, 618, 2047, 6908, 23703, 82488, 290499, 1033398, 3707837, 13402681, 48760350, 178405139, 656043838, 2423307027, 8987427446, 33453694465, 124936258104, 467995871753, 1757900019076, 6619846420527, 24987199492678, 94520750408681
Offset: 1
Keywords
Examples
There are a total of 11 matchings with 3 edges that are both L&P and C&C. Of those 11, 5 begin with a hairpin.
References
- C. R. Ahrendt, N. I. Anderson, M. R. Riehl, and M. D. Scanlan, The intersection of all Largest Hairpin Family Matchings, preprint.
Links
- Aziza Jefferson, The Substitution Decomposition of Matchings and RNA Secondary Structures, PhD Thesis, University of Florida, 2015.
Programs
-
Maple
f:= n->(-1/2*(1+I*sqrt(3))-4*4^n*GAMMA(n+3/2)*hypergeom([1,n+3/2],[n+3],4)/(sqrt(Pi)*GAMMA(n+3)))-n; # Alternatively: a_list := proc(m) local L, b, s, n; L := NULL; b := 1; s:= 0; for n from 1 to m do s := s + b; L := L, s - n; b := b * (4 * n + 2) / (n + 2); od; L end: a_list(27); # Peter Luschny, Jul 22 2017
-
Mathematica
Table[Sum[CatalanNumber[k], {k, 1, n}] - n, {n, 1, 27}] (* Peter Luschny, Jul 22 2017 *)
-
Python
from sympy import catalan def a(n): return sum(catalan(k) for k in range(1, n + 1)) - n print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 31 2017
Formula
From Vaclav Kotesovec, Apr 07 2017: (Start)
D-finite with recurrence: (n-2)*(n+1)*a(n) = 2*(3*n^2 - 6*n + 1)*a(n-1) - (3*n - 5)*(3*n - 2)*a(n-2) + 2*(n-1)*(2*n - 3)*a(n-3).
a(n) ~ 2^(2*n+2) / (3*sqrt(Pi)*n^(3/2)).
(End)
a(n) = (Sum_{k=1..n} Catalan(k)) - n. - Peter Luschny, Jul 22 2017
G.f.: (sqrt(1-4*x)-1)/(2*x*(x-1))-1/(x-1)^2. - Alois P. Heinz, Jul 22 2017
Comments