A280430 Longest word T from 2 equal length strings S using no breakpoint reuse.
2, 4, 7, 14, 19, 34, 63, 76, 137, 248, 282, 502, 891, 980, 1718, 3000, 3233, 5594, 9646, 10256, 17565, 30000, 31597, 53690, 91033, 95214, 160803, 271108, 282054, 474060, 795677, 824334, 1380142, 2308114, 2383139, 3977364, 6631898, 6828316, 11366227
Offset: 0
Keywords
Examples
In this case, S is 2 strings with length 5. There are 8 breakpoints so 2 duplications can be made. The longest possible T has length 19 which can be obtained using the process below. ABCDE FGHIJ A|BCD|E FG|HIJ becomes ABCDE FGBCDHIJ after inserting BCD between G and H. AB|CDE F|GBCDHI|J becomes ABGBCDHICDE FGBCDHIJ after inserting GBCDHI between B and C.
References
- N. I. Anderson, M. J. Paukner, M. R. Riehl, and A. M. Steinman, String Duplication Histories with No-Breakpoint-Reuse, preprint.
Links
- Brona Brejová, Gad M. Landau, Tomáš Vinar, Fast computation of a string duplication history under no-breakpoint-reuse, Philos T Roy Soc A 372:20130133.
- Jean-Philippe Doyon, Vincent Ranwez, Vincent Daubin, Vincent Berry, Models, algorithms and programs for phylogeny reconciliation, Brief Bioinform, 12:5, 392-400, 2011.
Programs
-
Mathematica
Table[n + Simplify@ Sum[(((n - 2)/(1 + #2^2)) + (2/(#2 - #1))) #1^k + (((#2^2 (n - 2))/(1 + #2^2)) - (2/(#2 - #1))) #2^k + 2, {k, 0, Floor[2 (n - 1)/3]}] & @@ ((1 + Sqrt[5] {1, -1})/2), {n, 53}] (* Michael De Vlieger, Mar 01 2017 *)
Formula
a(n) = n + Sum_{0..k} (((n-2)/(1+Beta^2)) + (2/(Beta-alpha)))alpha^k + (((Beta^2(n-2))/(1+Beta^2)) - (2/(Beta-alpha)))Beta^k + 2 where alpha = (1+sqrt(5))/2, beta = (1-sqrt(5))/2, n = number of letters in each chromosome, and k = floor(2(n-1)/3).
Conjecture: (2 +2*x +3*x^2 -7*x^3 -9*x^4 -6*x^5 +14*x^6 +12*x^7 +7*x^8 -7*x^9 -6*x^10 -3*x^11 +x^13+x^14)/ (1+x+x^2)/ (x-1)^2/ (x^6-3*x^3+1)^2 . - R. J. Mathar, Mar 06 2022
Extensions
More terms from Michael De Vlieger, Mar 01 2017
Comments