A280442 Numerators of coefficients in the Taylor series expansion of Sum_{n>=0} exp((-1)^n*euler(2*n)*x^n/(2*n)).
1, 1, 11, 173, 22931, 1319183, 233526463, 29412432709, 39959591850371, 8797116290975003, 4872532317019728133, 1657631603843299234219, 2718086236621937756966743, 1321397724505770800453750299, 1503342018433974345747514544039
Offset: 0
Links
- Sergey Khrushchev, Orthogonal Polynomials and Continued Fractions, From Euler's point of view, Corollary 4.26, p. 192, 2008.
Programs
-
Maple
nmax:=14: f := series(exp(add((-1)^n*euler(2*n) * x^n/(2*n), n=1..nmax+1)), x=0, nmax+1): for n from 0 to nmax do a(n) := numer(coeff(f, x, n)) od: seq(a(n), n=0..nmax);
-
Sage
def A280442_list(prec): P.
= PowerSeriesRing(QQ, default_prec=2*prec) def g(x): return exp(sum((-1)^k*euler_number(2*k)*x^k/(2*k) for k in (1..prec+1))) R = P(g(x)).coefficients() d = lambda n: 2^(2*n - sum(n.digits(2))) return [d(n)*R[n] for n in (0..prec)] print(A280442_list(14)) # Peter Luschny, Jan 05 2017
Formula
a(n) = numerators of coefficients in the Taylor series expansion of Sum_{n>=0} exp((-1)^n * euler(2*n)*x^n/(2*n)).
Let S = Sum_{n>=0} (-1)^n*euler(2*n)*x^n/(2*n) and w(n) = A005187(n) then a(n) = 2^w(n) * [x^n] exp(S). - Peter Luschny, Jan 05 2017
Comments