A280443 a(n) = A280442(n)/A223067(n) = A067624(n)*A046161(n)/A223068(n).
1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 11, 17, 1, 23, 1, 11, 1, 1, 1, 17, 11, 1, 1, 1, 23, 11, 43, 17, 1, 1, 121, 1, 1, 1, 1, 4301, 1, 1, 1, 73, 11, 1, 1, 17, 1, 11, 23, 43, 1, 1, 11, 17, 1, 1, 1, 11, 101, 23, 89, 17, 11, 1, 1, 83, 1, 11, 1
Offset: 0
Programs
-
Maple
nmax:=68: A067624 := n -> 2^(2*n)*(2*n)!: f := series((exp(add((-1)^n*euler(2*n) * x^n/(2*n), n=1..nmax+1))), x=0, nmax+1): for n from 0 to nmax do b(n) := coeff(f, x, n); a(n) := numer(b(n))/numer(b(n)/A067624(n)) od: seq(a(n), n=0..nmax);
-
Sage
def A280443_list(prec): P.
= PowerSeriesRing(QQ, default_prec=2*prec) g = lambda x: exp(sum((-1)^k*euler_number(2*k)*x^k/(2*k) for k in (1..prec+1))) R = P(g(x)).coefficients() d = lambda n: 2*n - sum(n.digits(2)) return [(2^d(n)*R[n]/(numerator(R[n]/factorial(2*n)))) for n in (0..prec)] print(A280443_list(68)) # Peter Luschny, Jan 05 2017
Comments