cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A280443 a(n) = A280442(n)/A223067(n) = A067624(n)*A046161(n)/A223068(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 11, 17, 1, 23, 1, 11, 1, 1, 1, 17, 11, 1, 1, 1, 23, 11, 43, 17, 1, 1, 121, 1, 1, 1, 1, 4301, 1, 1, 1, 73, 11, 1, 1, 17, 1, 11, 23, 43, 1, 1, 11, 17, 1, 1, 1, 11, 101, 23, 89, 17, 11, 1, 1, 83, 1, 11, 1
Offset: 0

Views

Author

Johannes W. Meijer and Joseph Abate, Jan 03 2017

Keywords

Comments

This sequence is related in a peculiar way to A223067 and A223068, sequences related to the complete elliptic integral of the first kind K(k), and to A280442 and A046161, sequences related to the unsigned Euler numbers A000364.
In this sequence certain prime numbers appear on a regular basis, either by itself or as a factor of a composite number, i.e., a(n)=11 if n=7+5*k, a(n)=17 if n=13+8*k, a(n)=23 if n=15+11*k, a(n)=43 if n=28+21*k, a(n)=73 if n=41+36*k, a(n)=101 if n=58+50*k, a(n)=89 if n=60+44*k, a(n)=83 if n=65+41*k, in all cases k >= 0. We observe that the period T of each prime is apparently T = (prime-1)/2.
Conjecture: The sequence A280443 will not have a(n)=1 after some point.

Crossrefs

Cf. A000364 (Euler numbers), A046161, A067624, A223067, A223068, A280442.

Programs

  • Maple
    nmax:=68: A067624 := n -> 2^(2*n)*(2*n)!: f := series((exp(add((-1)^n*euler(2*n) * x^n/(2*n), n=1..nmax+1))), x=0, nmax+1): for n from 0 to nmax do b(n) := coeff(f, x, n); a(n) := numer(b(n))/numer(b(n)/A067624(n)) od: seq(a(n), n=0..nmax);
  • Sage
    def A280443_list(prec):
        P. = PowerSeriesRing(QQ, default_prec=2*prec)
        g = lambda x: exp(sum((-1)^k*euler_number(2*k)*x^k/(2*k) for k in (1..prec+1)))
        R = P(g(x)).coefficients()
        d = lambda n: 2*n - sum(n.digits(2))
        return [(2^d(n)*R[n]/(numerator(R[n]/factorial(2*n)))) for n in (0..prec)]
    print(A280443_list(68)) # Peter Luschny, Jan 05 2017

Formula

a(n) = A280442(n)/A223067(n).
a(n) = A067624(n)*A046161(n)/A223068(n).
a(n) = A280442(n)/numer((A280442(n)/A046161(n))/A067624(n)).

A046161 a(n) = denominator of binomial(2n,n)/4^n.

Original entry on oeis.org

1, 2, 8, 16, 128, 256, 1024, 2048, 32768, 65536, 262144, 524288, 4194304, 8388608, 33554432, 67108864, 2147483648, 4294967296, 17179869184, 34359738368, 274877906944, 549755813888, 2199023255552, 4398046511104, 70368744177664, 140737488355328, 562949953421312
Offset: 0

Views

Author

Keywords

Comments

Also denominator of e(0,n) (see Maple line). - N. J. A. Sloane, Feb 16 2002
Denominator of coefficient of x^n in (1+x)^(k/2) or (1-x)^(k/2) for any odd integer k. - Michael Somos, Sep 15 2004
Numerator of binomial(2n,n)/4^n = A001790(n).
Denominators in expansion of sqrt(c(x)), c(x) the g.f. of A000108. - Paul Barry, Jul 12 2005
Denominator of 2^m*Gamma(m+3/4)/(Gamma(3/4)*Gamma(m+1)). - Stephen Crowley, Mar 19 2007
Denominator in expansion of Jacobi_P(n,1/2,1/2,x). - Paul Barry, Feb 13 2008
This sequence equals the denominators of the coefficients of the series expansions of (1-x)^((-1-2*n)/2) for all integer values of n; see A161198 for detailed information. - Johannes W. Meijer, Jun 08 2009
Numerators of binomial transform of 1, -1/3, 1/5, -1/7, 1/9, ... (Madhava-Gregory-Leibniz series for Pi/4): 1, 2/3, 8/15, 16/35, 128/315, 256/693, .... First differences are -1/3, -2/15, -8/105, -16/315, -128/3465, -256/9009, ... which contain the same numerators, negated. The second differences are 1/5, 2/35, 8/315, 16/1155, 128/15015, ... again with the same numerators. Second column: 2/3, -2/15, 2/35, -2/63, 2/99; see A000466(n+1) = A005563(2n+1). Third column: 8*(1/15, -1/105, 1/315, -1/693, ...), see A061550. See A173294 and A173296. - Paul Curtz, Feb 16 2010
0, 1, 5/3, 11/5, 93/35, 193/63, 793/231, ... = (0 followed by A120778(n))/A001790(n) is the binomial transform of 0, 1, -1/3, 1/5, -1/7, 1/9, ... . See A173755 and formula below. - Paul Curtz, Mar 13 2013
Numerator of power series of arcsin(x)/sqrt(1-x^2), centered at x=0. - John Molokach, Aug 02 2013
Denominators of coefficients in the Taylor series expansion of Sum_{n>=0} exp((-1)^n * Euler(2*n)*x^n/(2*n)), see A280442 for the numerators. - Johannes W. Meijer, Jan 05 2017
Denominators of Pochhammer(n+1, -1/2)/sqrt(Pi). - Adam Hugill, Sep 11 2022
a(n) is the denominator of the mean value of cos(x)^(2*n) from x = 0 to 2*Pi. - Stefano Spezia, May 16 2023
4^n/binomial(2n,n) is the expected value of the number of socks that are randomly drawn out of a drawer of n different pairs of socks, when one sock is drawn out at a time until a matching pair is found (King and King, 2005). - Amiram Eldar, Jul 02 2023
a(n) is the denominator of (1/Pi) * Integral_{x=-oo..+oo} sech(x)^(2*n+1) dx. The corresponding numerator is A001790(n). - Mohammed Yaseen, Jul 29 2023
a(n) is the numerator of Integral_{x=0..Pi/2} sin(x)^(2*n+1) dx. The corresponding denominator is A001803(n). - Mohammed Yaseen, Sep 22 2023

Examples

			sqrt(1+x) = 1 + (1/2)*x - (1/8)*x^2 + (1/16)*x^3 - (5/128)*x^4 + (7/256)*x^5 - (21/1024)*x^6 + (33/2048)*x^7 + ...
binomial(2n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ...
The sequence e(0,n) begins 1, 3/2, 21/8, 77/16, 1155/128, 4389/256, 33649/1024, 129789/2048, 4023459/32768, ...
		

References

  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
  • B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.282).
  • Eli Maor, e: The Story of a Number. Princeton, New Jersey: Princeton University Press (1994), p. 72.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equations 6:14:5 - 6:14:9 at pages 50-51.

Crossrefs

Cf. A161198 triangle related to the series expansions of (1-x)^((-1-2*n)/2) for all values of n.

Programs

  • Magma
    [Denominator(Binomial(2*n,n)/4^n): n in [0..30]]; // Vincenzo Librandi, Jul 18 2015
    
  • Maple
    e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)* binomial(m+k, m) *binomial(k,l), k=l..m); end: seq(denom(e(0,n)), n = 0..24);
    Z[0]:=0: for k to 30 do Z[k]:=simplify(1/(2-z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(denom(coeff(gser, z, n)), n=-1..23); # Zerinvary Lajos, May 21 2008
    A046161 := proc(n) option remember: if n = 0 then 1 else 2^A001511(n) * procname(n-1) fi: end: A001511 := proc(n): padic[ordp](2*n, 2) end: seq(A046161(n), n = 0..24); # Johannes W. Meijer, Nov 04 2012
    A046161 := n -> 4^n/2^add(i,i=convert(n, base, 2)):
    seq(A046161(n), n=0..24); # Peter Luschny, Apr 08 2014
  • Mathematica
    a[n_, m_] := Binomial[n - m/2 + 1, n - m + 1] - Binomial[n - m/2, n - m + 1]; s[n_] := Sum[ a[n, k], {k, 0, n}]; Table [Denominator[s[n]], {n, 0, 26}] (* Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002 *)
    Denominator[Table[Binomial[2n,n]/4^n,{n,0,30}]] (* Harvey P. Dale, Oct 29 2012 *)
    Table[Denominator@LegendreP[2n,0],{n,0,24}] (* Andres Cicuttin, Jan 22 2018 *)
  • Maxima
    a(n) := denom(binomial(-1/2,n));
    makelist(a(n),n,0,24); /* Peter Luschny, Nov 21 2012 */
    
  • PARI
    a(n)=if(n<0,0,denominator(binomial(2*n,n)/4^n)) /* Michael Somos, Sep 15 2004 */
    
  • PARI
    a(n)=my(s=n);while(n>>=1,s+=n);2^s \\ Charles R Greathouse IV, Apr 07 2012
    
  • PARI
    a(n)=denominator(I^-n*pollegendre(n,I/2)) \\ Charles R Greathouse IV, Mar 18 2017
    
  • Python
    def A046161(n): return 1<<(n<<1)-n.bit_count() # Chai Wah Wu, Nov 15 2022
  • Sage
    def A046161(n):
        A005187 = lambda n: A005187(n//2) + n if n > 0 else 0
        return 2^A005187(n)
    [A046161(n) for n in (0..24)]  # Peter Luschny, Nov 16 2012
    

Formula

a(n) = 2^(2*n - 1 - A048881(n-1)), if n > 0.
a(n) = 2^A005187(n).
a(n) = 4^n/2^A000120(n). - Michael Somos, Sep 15 2004
a(n) = 2^A001511(n)*a(n-1) with a(0) = 1. - Johannes W. Meijer, Nov 04 2012
a(n) = denominator(binomial(-1/2,n)). - Peter Luschny, Nov 21 2012
a(n) = (0 followed by A120778(n)) + A001790(n). - Paul Curtz, Mar 13 2013
a(n) = 2^n*A060818(n). - Johannes W. Meijer, Jan 05 2017
a(n)/A001790(n) ~ sqrt(Pi*n) (King and King, 2005). - Amiram Eldar, Jul 02 2023

A067624 a(n) = 2^(2*n)*(2*n)!.

Original entry on oeis.org

1, 8, 384, 46080, 10321920, 3715891200, 1961990553600, 1428329123020800, 1371195958099968000, 1678343852714360832000, 2551082656125828464640000, 4714400748520531002654720000, 10409396852733332453861621760000
Offset: 0

Views

Author

Benoit Cloitre, Feb 02 2002

Keywords

Comments

For n >= 1, a(n) equals the absolute value of the determinant of the 4n X 4n matrix with i's along the superdiagonal (where i is the imaginary unit), and 2, 3, 4, ... 4*n along the subdiagonal, and 0's everywhere else. (See Mathematica code below.) - John M. Campbell, Jun 04 2011

Crossrefs

Cf. A000165.
Appears in A162445, A061549 and A120738. - Johannes W. Meijer, Jul 06 2009

Programs

  • Magma
    [2^(2*n)*Factorial(2*n): n in [0..15]]; // Vincenzo Librandi, Feb 18 2018
  • Maple
    for n from 0 to 30 by 2 do printf(`%d,`,2^(n)*(n)!) od: # James Sellers, Feb 11 2002
    A067624 := n -> 2^(2*n)*(2*n)!: seq(A067624(n), n=0..12); # Johannes W. Meijer, Jan 05 2017
  • Mathematica
    Table[Abs[Det[Array[KroneckerDelta[#1 + 1, #2]*I &, {4*n, 4*n}] + Array[KroneckerDelta[#1 - 1, #2]*#1 &, {4*n, 4*n}]]], {n, 1, 20}] (* John M. Campbell, Jun 04 2011 *)
    Table[2^(2 n) (2 n)!, {n, 0, 30}] (* Vincenzo Librandi, Feb 18 2018 *)

Formula

a(n) = A000165(2*n) where A000165(k) are the double factorial numbers 2^k*k!=(2k)!!. - Corrected by Johannes W. Meijer, Jul 05 2009
a(n) = (4*n)!! = 2^(2*n)*(2*n)!. - Johannes W. Meijer, Jul 06 2009
sqrt((1+cos(x))/2) = Sum_{n>=0} (-1)^n * x^(2*n) / a(n).
a(n) = (A280442(n)/A046161(n))/(A223067(n)/A223068(n)). - Johannes W. Meijer, Jan 05 2017
From Amiram Eldar, Jul 12 2020: (Start)
Sum_{n>=0} 1/a(n) = cosh(1/2).
Sum_{n>=0} (-1)^n/a(n) = cos(1/2). (End)

Extensions

More terms from James Sellers, Feb 11 2002

A223067 A sequence related to the period T of a simple gravity pendulum for arbitrary amplitudes.

Original entry on oeis.org

1, 1, 11, 173, 22931, 1319183, 233526463, 2673857519, 39959591850371, 8797116290975003, 4872532317019728133, 1657631603843299234219, 247098748783812523360613, 77729277912104164732573547, 1503342018433974345747514544039
Offset: 0

Views

Author

Johannes W. Meijer, Mar 14 2013

Keywords

Comments

For small angles the period T of a simple gravity pendulum obeys Christiaan Huygens’s law, i.e. T = 2*Pi*sqrt(L/g) with L the length of the pendulum and g the acceleration due to gravity. For arbitrary amplitudes the period T is given below, see Wikipedia. The Taylor series expansion of T as a function of the angular displacement phi leads for the numerators of the even powers of phi to the sequence given above and for the denominators to A223068.

Examples

			T = 2*Pi*sqrt(L/g) * (1 + (1/16)*phi^2 + (11/3072)*phi^4 + (173/737280)*phi^6 + … ).
		

References

  • C. D. Andriesse and Sally Miedema, Huygens: The Man Behind the Principle, Ch. 8, 2005.

Crossrefs

Cf. A223068 (denominators), A019692 (2*Pi).

Programs

  • Maple
    nmax:=14: f := series((2/Pi)*EllipticK(sin(phi/2)), phi, 2*nmax+1): for n from 0 to nmax do a(n):= numer(coeff(f, phi, 2*n)) od: seq(a(n), n=0..nmax); # End first program.
    nmax:=14: f := series(1/((Pi/4)*(1+cos(phi/2))/EllipticK((1-cos(phi/2))/(1+cos(phi/2)))), phi, 2*nmax+1): for n from 0 to nmax do a(n):= numer(coeff(f, phi, 2*n)) od: seq(a(n), n=0..nmax); # End second program. - Johannes W. Meijer, Dec 28 2016
  • Mathematica
    s = Series[EllipticK[Sin[t/2]^2 ], {t, 0, 60}]; CoefficientList[s/Pi, t^2] // Numerator (* Jean-François Alcover, Oct 07 2014 *)
  • Sage
    def A223067_list(prec):
        P. = PowerSeriesRing(QQ, default_prec=2*prec)
        g = lambda x: exp(sum((-1)^k*euler_number(2*k)*x^k/(2*k) for k in (1..prec+1)))
        R = P(g(x)).coefficients()
        return [numerator(R[n]/factorial(2*n)) for n in (0..prec)]
    print(A223067_list(14)) # Peter Luschny, Jan 05 2017

Formula

T = 2*Pi*sqrt(L/g)*(2/Pi)*K(sin(phi/2)) with K(k) the complete elliptic integral of the first kind.
T = 2*Pi*sqrt(L/g)/M(1,cos(phi/2)) where M(x,y) = (Pi/4)*((x+y)/(K((x-y)/(x+y)) is the arithmetic-geometric mean of x and y. - Johannes W. Meijer, Dec 28 2016
Let S = Sum_{n>=0} (-1)^n*euler(2*n)*x^n/(2*n) then a(n) = numerator(1/(2*n)! * [x^n] exp(S)). - Peter Luschny, Jan 05 2017

A223068 A sequence related to the period T of a simple gravity pendulum for arbitrary amplitudes.

Original entry on oeis.org

1, 16, 3072, 737280, 1321205760, 951268147200, 2009078326886400, 265928913086054400, 44931349155019751424000, 109991942731488351485952000, 668751011807449177034588160000, 2471703739640332158319837839360000
Offset: 0

Views

Author

Johannes W. Meijer, Mar 14 2013

Keywords

Comments

The period T of a simple gravity pendulum for arbitrary amplitudes is given by a complicated formula, see A223067. The Taylor series expansion of T as a function of the angular displacement phi leads for the denominators of the even powers of phi to the sequence given above and for the numerators to A223067.

Examples

			T = 2*Pi*sqrt(L/g) * (1 + (1/16)*phi^2 + (11/3072)*phi^4 + (173/737280)*phi^6 + ... ).
		

Crossrefs

Cf. A223067 (numerators), A019692 (2*Pi).

Programs

  • Maple
    nmax:=11: f := series(1/((Pi/4)*(1+cos(phi/2))/EllipticK((1-cos(phi/2))/(1+cos(phi/2)))), phi, 2*nmax+1): for n from 0 to nmax do a(n):= denom(coeff(f, phi, 2*n)) od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 05 2017
  • Mathematica
    s = Series[EllipticK[Sin[t/2]^2 ], {t, 0, 50}]; CoefficientList[2*s, t^2] // Denominator (* Jean-François Alcover, Oct 07 2014 *)
Showing 1-5 of 5 results.