cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280486 G.f.: Product_{i>=1, j>=1, k>=1, l>=1} (1 + x^(i*j*k*l)).

Original entry on oeis.org

1, 1, 4, 8, 20, 36, 86, 150, 314, 564, 1088, 1902, 3557, 6085, 10902, 18506, 32124, 53584, 91133, 149749, 249315, 405121, 662582, 1063152, 1714580, 2719842, 4327302, 6797316, 10686005, 16622003, 25861855, 39866017, 61422891, 93910783, 143406552, 217537696
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(i*j*k*l)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}, {l, 1, nmax/i/j/k}], {x, 0, nmax}], x]
    nmax = 50; tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#] * DivisorSigma[0, #] &], {n, 1, nmax}]; s = 1 + x; Do[s *= Sum[Binomial[tau4[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Sep 08 2018 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^tau_4(k), where tau_4() = A007426. - Ilya Gutkovskiy, May 22 2018